ScienceIQ.com

What are Bacillariophyta?

Bacillariophyta are diatoms. All diatoms are single-celled organisms. They are microscopic, glassy organisms that photosynthesize for food, like plants. Diatoms live in the sediments of freshwater, such as lakes, and in marine environments, such as the ocean. Diatoms are also called microfossils, because of their size and because they date all the ...

Continue reading...

WhatareBacillariophyta
Engineering

Don't Blow A Gasket!

Don't blow a gasket! Who hasn't heard this old adage at some time? What does it actually mean, and for that matter, what is a gasket? Gaskets are simple structures used to fill in and seal the spaces ... Continue reading

DontBlowAGasket
Engineering

How We Use Crystals To Tell Time

Quartz clock operation is based on the piezoelectric property of quartz crystals. If you apply an electric field to the crystal, it changes its shape, and if you squeeze it or bend it, it generates an ... Continue reading

Crystals
Astronomy

GP-B: More Than Just a Pretty Face

Questions about the ways space, time, light and gravity relate to each other have been asked for eons. Theories have been offered, yet many puzzles remain to be solved. No spacecraft ever built has ... Continue reading

GPBMoreThanJustaPrettyFace
Biology

Where is God in the Brain?

A British study reported that epileptics had 'profoundly spiritual experiences' in a specific region of the brain. In other studies, there was also a region of the brain that became extremely active ... Continue reading

BrainGod

Tick-Tock Atomic Clock

AtomicClockModern navigators rely on atomic clocks. Instead of old-style springs or pendulums, the natural resonances of atoms -- usually cesium or rubidium -- provide the steady 'tick' of an atomic clock. The best ones on Earth lose no more than one second in millions of years. Sailers, truck drivers, soldiers, hikers, and pilots ... they all rely on atomic clocks, even if they don't know it. Anyone who uses the Global Positioning System (GPS) benefits from atomic time. Each of the 24 GPS satellites carries 4 atomic clocks on board. By triangulating time signals broadcast from orbit, GPS receivers on the ground can pinpoint their own location.

Tiny instabilities in those orbiting clocks contribute at least a few meters of error to single-receiver GPS measurements. Making the clocks smaller (so that more of them can fit on each satellite) and increasing their stability could reduce such errors to fractions of a meter. Pilots landing on narrow airstrips at night would appreciate the improvement. So would surveyors, prospectors, search and rescue teams ... and farmers. 'Precision farmers' already use GPS-guided tractors to dispense custom-doses of water, fertilizer and pesticides over garden-sized plots. Better GPS data could guide those tractors to individual rows or perhaps even to individual plants for special care.