ScienceIQ.com

Serendipity In Science

Most scientists accept the notion that serendipity plays a major role in their work. Too many discoveries have been, after all, the result of 'lucky accidents.' In the 16th century, for example, scalding with oil of elder was the preferred treatment for gunshot wounds. French physician Ambroise Pare learned otherwise when, after running out of oil ...

Continue reading...

SerendipityInScience
Astronomy

Catch A Shooting Star

A meteor, sometimes called a 'shooting star,' can be the brightest object in the night sky, yet meteoroids are the smallest bodies in the solar system that can be observed by eye. Wandering through ... Continue reading

ShootingStar
Mathematics

Math On the Mind

In the mid-1800's, Paul Broca discovered that there were specialized functions for different regions in the human brain. He identified the third gyrus (the ridges on the surface of the cerebral ... Continue reading

MathMind
Medicine

Resistance is NOT Futile!

Maybe if you are a Star Trek heroine up against the Borg, 'resistance is futile.' But if you are a germ that makes people sick, resistance - to antibiotics - is not futile at all. ... Continue reading

ResistanceisNOTFutile
Physics

Newton's First Law of Motion

Sir Isaac Newton first presented his three laws of motion in the 'Principia Mathematica Philosophiae Naturalis' in 1686. His first law states that every object will remain at rest or in uniform motion ... Continue reading

NewtonsFirstLawofMotion

Magnitude of an Astronomical Object

MagnitudeofanAstronomicalObject'Visual magnitude' is a scale used by astronomers to measure the brightness of a star. The term 'visual' means the brightness is being measured in the visible part of the spectrum, the part you can see with your eye (usually around 5500 angstroms). The first known catalogue of stars was made by the Greek Astronomer Hipparchus in about 120 B.C. and contained 1080 stars. It was later edited and increased to 1022 stars by Ptolemy in a famous catalogue known as the 'Almagest'. Hipparchus listed the stars that could be seen in each constellation, described their positions, and rated their brightness on a scale of 1 to 6, the brightest being 1. This method of describing the brightness of a star survives today. Of course, Hipparchus had no telescope, and so could only see stars as dim as 6th magnitude, but today we can see stars with ground-based telescopes down to about 22nd magnitude.

When astronomers began to accurately measure the brightness of stars using instruments, it was found that each magnitude is about 2.5 times brighter than the next greater magnitude. This means a difference in magnitudes of 5 units (from magnitude 1 to magnitude 6, for example) corresponds to a change in brightness of 100 times. With equipment to make more accurate measurements, astronomers were able to assign stars decimal values, like 2.75, rather than rounding off to magnitude 2 or 3. There are stars brighter than magnitude 1. The star Vega (alpha Lyrae) has a visual magnitude of 0. There are a few stars brighter than Vega. Their magnitudes will be negative.

Astronomers usually refer to 'apparent magnitudes', that is, how bright a star appears to us here at Earth. Apparent magnitudes are often written with a lower case 'm' (like 3.24m). The brightness of a star depends not only on how bright it actually is, but also on how far away it is. For example, a street light appears very bright directly underneath it, but not as bright if it's 1/2 a mile away down the road. Therefore, astronomers developed the 'absolute' brightness scale. Absolute magnitude is defined as how bright a star would appear if it were exactly 10 parsecs (about 33 light years) away from Earth. For example, the Sun has an apparent magnitude of -26.7 (because it's very, very close) and an absolute magnitude of +4.8. Absolute magnitudes are often written with a capital (upper case) 'M'.