ScienceIQ.com

How Can A Bullet-proof Vest Stop A Bullet?

Here's an experiment: take the small coil springs from a dozen or so retractable pens and roll them together in a heap until they are thoroughly tangled and entwined. Now try to pull them apart from end to end. You should find them extremely difficult to pull apart this way, as anyone who has ever tried to untangle a 'Slinky' toy will know. ...

Continue reading...

BulletproofVestStopABullet
Biology

Word Power of the Very Young

Before they turn 2, most children have a vocabulary of about 50 words. From 1st to 5th grades, according to some estimates, their vocabulary increases by about 30,000 words. That's 20 words a day! How ... Continue reading

WordPowerChildren
Biology

Cougars, A Jumping Star

Cougars would make great basketball or track-and-field players. Of all the big cats, they are the best jumpers. They can jump 40 feet forward from a standing position, and 15 feet or higher straight ... Continue reading

CougarsAJumpingStar
Geology

When This Lake 'Burps,' Better Watch Out!

Nearly twenty years ago, two lakes in Cameroon, a country in Africa, 'burped,' killing hundreds of people. What makes a lake burp? Lake Nyos and Lake Monoun are unusual lakes. They each formed in the ... Continue reading

LakeBurps
Medicine

What is Headache?

When a person has a headache, several areas of the head can hurt, including a network of nerves that extends over the scalp and certain nerves in the face, mouth, and throat. The muscles of the head ... Continue reading

WhatisHeadache

Hubble & Keck Teams Find Farthest Known Galaxy in Universe

HubbleKeckAn international team of astronomers may have set a new record in discovering what is the most distant known galaxy in the universe. Located an estimated 13 billion light-years away, the object is being viewed at a time only 750 million years after the big bang, when the universe was barely 5 percent of its current age. The primeval galaxy was identified by combining the power of NASA's Hubble Space Telescope and CARA's W. M. Keck Telescopes on Mauna Kea in Hawaii. These great observatories got a boost from the added magnification of a natural 'cosmic gravitational lens' in space that further amplifies the brightness of the distant object. The newly discovered galaxy is likely to be a young galaxy shining during the end of the so-called 'Dark Ages' -- the period in cosmic history which ended with the first galaxies and quasars transforming opaque, molecular hydrogen into the transparent, ionized universe we see today.

The new galaxy was detected in a long exposure of the nearby cluster of galaxies Abell 2218, taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. This cluster is so massive that the light of distant objects passing through the cluster actually bends and is amplified, much as a magnifying glass bends and magnifies objects seen through it. Such natural gravitational 'telescopes' allow astronomers to see extremely distant and faint objects that could otherwise not be seen. Analysis of a sequence of Hubble images indicate the object lies in between a redshift of 6.6 and 7.1, making it the most distant source currently known. However, long exposures in the optical and infrared taken with spectrographs on the 10-meter Keck telescopes suggest that the object has a redshift towards the upper end of this range, around redshift 7.

Redshift is a measure of how much the wavelengths of light are shifted to longer wavelengths. The greater the shift in wavelength toward the redder regions of the spectrum, the more distant the object is. The extremely faint galaxy is so far away its visible light has been stretched into infrared wavelengths, making the observations particularly difficult. Using the combination of the high resolution of Hubble and the large magnification of the cosmic lens, the astronomers estimate that this object, although very small -- only 2,000 light-years across -- is forming stars extremely actively. However, two intriguing properties of the new source are the apparent lack of the typically bright hydrogen emission line and its intense ultraviolet light which is much stronger than that seen in star-forming galaxies closer by.