ScienceIQ.com

Leaps and Bounds

Leap years are years with 366 days, instead of the usual 365. Leap years are necessary because the actual length of a year is 365.242 days, not 365 days, as commonly stated. Basically, leap years occur every 4 years, and years that are evenly divisible by 4 (2004, for example) have 366 days. This extra day is added to the calendar on February 29th. ...

Continue reading...

LeapsandBounds
Astronomy

Large Asteroid Zooms Safely Past Earth

A mountain-sized asteroid made its closest approach to Earth at 9:35 a.m. Eastern Time on Wednesday, Sept. 29, 2004. Although asteroid 4179 Toutatis came no closer than four times the distance between ... Continue reading

LargeAsteroidZoomsPastEarth
Physics

Neutrinos to the Rescue

Have you ever wondered what the most abundant particle in the universe is after photons of light? The answer is: Neutrinos. These tiny, neutral and almost mass-less particles that move at almost the ... Continue reading

Neutrinos
Astronomy

Introduction to Constellations

'Constellation' is the name we give to seeming patterns of starsin the night sky. 'Stella' is the Latin word for star and a constellation is a grouping of stars. In general, the stars in these groups ... Continue reading

IntroductiontoConstellations
Engineering

Hollywood To The Rescue

Sixty years ago, World War II was driving many advances in the sciences; a surprising number of these developments have evolved to impact our lives today. At the beginning of the war, scientists and ... Continue reading

HollywoodRescue

The Chandra Mission

ChandraNASA's Chandra X-ray Observatory, which was launched and deployed by Space Shuttle Columbia on July 23, 1999, is the most sophisticated X-ray observatory built to date. Chandra is designed to observe X-rays from high-energy regions of the universe, such as the remnants of exploded stars.The Observatory has three major parts: (1) the X-ray telescope, whose mirrors focus X-rays from celestial objects; (2) the science instruments which record the X-rays so that X-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work.

Chandra's unusual orbit was achieved after deployment by a built-in propulsion system which boosted the observatory to a high Earth orbit. This orbit, which has the shape of an ellipse, takes the spacecraft more than a third of the way to the moon before returning to its closest approach to the earth of 16,000 kilometers (9,942 miles). The time to complete an orbit is 64 hours and 18 minutes. The spacecraft spends 85% of its orbit above the belts of charged particles that surround the Earth. Uninterrupted observations as long as 55 hours are possible and the overall percentage of useful observing time is much greater than for the low earth orbit of a few hundred kilometers used by most satellites.

Chandra's improved sensitivity can make possible more detailed studies of black holes, supernovas, and dark matter and increase our understanding of the origin, evolution, and destiny of the universe.