ScienceIQ.com

Vibrational Energy

Why is hearing such a rich and powerful sense? Maybe because it alone of all the senses has the power to fill our entire body with vibrational energy. We sometimes think of hearing as one of the 'distant' senses, distant because we can use it to perceive things from a distance without having to get too close. In some ways, though, hearing is a much ...

Continue reading...

VibrationalEnergy
Geology

Pyroclastic Flows: Deadly Rivers of Rock

A volcano, during a violent eruption, blasts massive amounts of heated rock fragments, hot gas and ash out vents and collapsing domes. This sudden outpouring of superheated material reaches ... Continue reading

VolcanoFlows
Geology

What Are The Key Ingredients For An Avalanche?

All that is necessary for an avalanche is a mass of snow and a slope for it to slide down. For example, have you ever noticed the snowpack on a car windshield after a snowfall? While the temperature ... Continue reading

Avalanche
Engineering

Don't Blow A Gasket!

Don't blow a gasket! Who hasn't heard this old adage at some time? What does it actually mean, and for that matter, what is a gasket? Gaskets are simple structures used to fill in and seal the spaces ... Continue reading

DontBlowAGasket
Biology

How Does Salmonella Get Inside Chicken Eggs?

Salmonella enteritidis is a bacterium that causes flu-like symptoms in humans. It usually enters the human body through undercooked food that we eat, such as chicken eggs. Symptoms develop 12-24 hours ... Continue reading

SalmonellaChickenEggs

Neutron Stars

NeutronStarsOrdinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% open space!

What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see-or feel-the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons!

Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. The result is a tiny star that is like a gigantic nucleus and has no empty space. Neutron stars are strange and fascinating objects. They represent an extreme state of matter that physicists are eager to know more about. Yet, even if you could visit one, you would be well-advised to turn down the offer.