ScienceIQ.com

Astronaut Photography

Astronauts are trained in scientific observation of ecological, geological, geographic, oceanographic, environmental, and meteorological phenomena. They are also instructed in the use of photographic equipment and techniques. Preflight training helps the astronauts make informed decisions on which areas and phenomena to photograph. Specific areas ...

Continue reading...

AstronautPhotography
Astronomy

A Ring Around a Dying Star

In November 2002, sky watchers were viewing the glow of meteors from the Leonid meteor shower burning up in Earth's atmosphere. They had been anticipating this celestial light show for months, ... Continue reading

ARingAroundaDyingStar
Chemistry

SO2: What is it? Where does it come from?

Sulfur dioxide, or SO2, belongs to the family of sulfur oxide gases (SOx). These gases dissolve easily in water. Sulfur is prevalent in all raw materials, including crude oil, coal, and ore that ... Continue reading

SO2
Biology

What Is Coral Bleaching?

Certain types of stressors, such as increased sea surface temperatures or toxic exposures to oil, can cause coral polyps to lose their pigmented zooxanthellae, or to 'bleach.' Bleaching occurs ... Continue reading

WhatIsCoralBleaching
Engineering

Inkjet Printers

At the heart of every inkjet printer, whether it is a color printer or just B&W, there is an ink cartridge that gets shuttled back and forth across the page, leaving a trail of letters or colors. Upon ... Continue reading

InkjetPrinters

Proteins In General

ProteinsInGeneralProteins form our bodies and help direct its many systems. Proteins are fundamental components of all living cells. They exhibit an enormous amount of chemical and structural diversity, enabling them to carry out an extraordinarily diverse range of biological functions.

Proteins help us digest our food, fight infections, control body chemistry, and in general, keep our bodies functioning smoothly. Scientists know that the critical feature of a protein is its ability to adopt the right shape for carrying out a particular function. But sometimes a protein twists into the wrong shape or has a missing part, preventing it from doing its job. Many diseases, such as Alzheimer's and 'mad cow', are now known to result from proteins that have adopted an incorrect structure.

Identifying a protein's shape, or structure, is key to understanding its biological function and its role in health and disease. Illuminating a protein's structure also paves the way for the development of new agents and devices to treat a disease. Yet solving the structure of a protein is no easy feat. It often takes scientists working in the laboratory months, sometimes years, to experimentally determine a single structure. Therefore, scientists have begun to turn toward computers to help predict the structure of a protein based on its sequence. The challenge lies in developing methods for accurately and reliably understanding this intricate relationship.