ScienceIQ.com

Infrared Headphones

Infrared headphones use infrared light to carry an information signal from a transmitter to a receiver. Sounds simple enough, but the actual process is very complicated. The human ear gathers sound as compression waves pass through and distort the air. These sympathetic distortions produce resonant vibrations in parts of the ear, which in turn ...

Continue reading...

InfraredHeadphones
Engineering

Teeny Tiny Technology

What's the smallest thing you can imagine? Can you think of something extremely tiny that is also extremely strong--many times stronger than steel--and very flexible? Give up? The answer is carbon ... Continue reading

TinyTechnology
Geology

Pointing North

The needle of a compass is a small magnet, one that is allowed to pivot in the horizontal plane. The needle experiences a torque from the ambient magnetic field of the Earth. The reaction to this ... Continue reading

PointingNorth
Chemistry

Oil Viscosity

Everybody recognizes 'oil' as a word for liquid materials that do not behave like water. They have a 'thickness' and self-cohesive character (autocohesion) that enables them to form a film on a ... Continue reading

OilViscosity
Biology

Why Are Zebra Mussels Successful As Invaders?

The zebra mussel (Dreissena polymorpha) is a small, non-native mussel originally found in Russia. In 1988, this animal was transported to North America in the ballast water of a transatlantic ... Continue reading

ZebraMusselsInvaders

Galileo Thermometers

GalileoThermometersEvery substance has the property of 'mass', which is the basic physical presence of matter. Matter occupies space. A physical mass contained within a physical space produces the physical property of 'density'. For practical purposes, we define density as the mass of material contained within a specific unitary volume, usually as grams per cubic centimeter. The density of a material is a reflection of the energy contained by the molecules that compose the material. Molecular energy is exhibited in molecules by various vibrational motions. The more energy the molecules contain, the more they vibrate. The higher the temperature, the more the molecules vibrate and bump into each other. This tends to push teh molecules apart so that fewer of them occupy the same volume of space as the temperature increases.

Thus the mass of any material contained within a unitary volume of space tends to decrease as the temperature increases. Therefore density is inversely proportional to temperature; as temperature increases, the density of materials decreases. Each different material exhibits its 'energy behaviour' in its own unique way. This can be used to correlate the density of a material with its temperature. A Galileo thermometer is constructed using small glass spheres to make a series of floating environments within a larger tube that is usually filled with water. Each sphere contains a specific amount of water and air or another liquid and air, and is tagged with a precisely calibratedcounterweight.

The counterweightis marked with a specific temperature. Each sphere thus has a specific density at a specific temperature. The spheres float within the primary liquid at a level determined by the difference in their densities. Because each of the spheres changes density with temperature at a different rate, the difference between the densities of the two materials decreases in a predictable manner. The level at which any particular sphere floats within the primary liquid changes accordingly. In this way, the temperature is clearly indicated by the sphere floating at the lowest level within the primary liquid.