ScienceIQ.com

Radon, A Rare Element

To the best of our knowledge, the entire universe is constructed from just over a hundred different types of building blocks called atoms. Each has its own characteristic properties, and while there are dangers associated with each and every one of them, it seems that the rarer the element, the more serious are its effects. Such is the case with ...

Continue reading...

RadonARareElement
Geology

What is Geodesy?

Geodesy is the science of measuring and monitoring the size and shape of the Earth. Geodesists basically assign addresses to points all over the Earth. If you were to stick pins in a model of the ... Continue reading

WhatisGeodesy
Astronomy

The Strange Spires of Callisto

When NASA's adventurous Galileo spacecraft skimmed a mere 138 km, (123 miles) above the surface of Jupiter's moon Callisto, onboard cameras captured the sharpest pictures ever of that moon's ... Continue reading

CallistoSpires
Physics

Galileo Thermometers

Every substance has the property of 'mass', which is the basic physical presence of matter. Matter occupies space. A physical mass contained within a physical space produces the physical property of ... Continue reading

GalileoThermometers
Physics

Poincare's Chaos

Over two hundred years after Newton published his laws of planetary motion the King Oscar II of Sweden and Norway sponsored a most unusual competition that would discover a whole new science. ... Continue reading

PoincaresChaos

What Is Microgravity?

MicrogravityGravity is a force that governs motion throughout the universe. It holds us to the ground and keeps the Earth in orbit around the Sun. Microgravity describes the environment in orbital space flight, which has very weak gravitational effects (one-millionth of what is felt on Earth) and which is sometimes referred to as a state of 'weightlessness.' The condition of microgravity occurs when an object is in 'free fall.' In free fall, an object falls faster and faster, accelerating with exactly the speed of attraction caused by gravity. Objects traveling around the Earth in a state of continuous free fall, or orbit, are essentially weightless even though their mass remains the same.

Conducting research in a microgravity environment gives researchers a unique opportunity to study the true nature of processes and materials without having to consider the effects of Earth's gravity. Thus, physics theories can be tested at levels of accuracy that are impossible on Earth. Microgravity experiments uncover the mystery of how gravity affects processes such as combustion science and fluid physics. This knowledge can then help to improve the way we do things on Earth.