ScienceIQ.com

How Can A Bullet-proof Vest Stop A Bullet?

Here's an experiment: take the small coil springs from a dozen or so retractable pens and roll them together in a heap until they are thoroughly tangled and entwined. Now try to pull them apart from end to end. You should find them extremely difficult to pull apart this way, as anyone who has ever tried to untangle a 'Slinky' toy will know. ...

Continue reading...

BulletproofVestStopABullet
Biology

How Do They Grow Those Colossal Pumpkins?

Those enormous pumpkins that set records every fall are living proof that both genes and environment make living things what they are. Home gardeners out to break the 2002 record for the world's ... Continue reading

ColossalPumpkins
Biology

Man-Eating Plants

What's for dinner? A bowl of salad greens, corn on the cob and strawberry shortcake for dessert. And it's not just us, most animals and insects love to munch, crunch and dine on plants. But there is a ... Continue reading

ManEatingPlants
Biology

When A Bass Isn't A Bass

Chilean Sea Bass, a very popular though overfished deep-sea fish, is not a bass at all. It is actually a Patagonian Toothfish (Dissostichus eleginoides), or sometimes its cousin, the Antarctic ... Continue reading

SeaBass
Medicine

It's Hay Fever Season!

If spring's flying pollen is making you sneeze, you are not alone. Some 40 to 50 million people in the United States complain of respiratory allergies, and experts estimate that three to four million ... Continue reading

HayFever

Rossi X-ray Timing Explorer Solves Mystery of Pulsar 'Speed Limit'

RossiXrayTimingExplorerGravitational radiation, ripples in the fabric of space predicted by Albert Einstein, may serve as a cosmic traffic enforcer, protecting reckless pulsars from spinning too fast and blowing apart, according to a report published in the July 3 issue of Nature. Containing the mass of our Sun compressed into a sphere about 10 miles across, pulsars are the core remains of exploded stars. Pulsars are born spinning, but can gain speed by pulling in gas from a neighboring star, reaching spin rates of nearly one revolution per millisecond, or almost 20 percent the speed of light. Scientists have long wondered how these 'millisecond' pulsars keep from accelerating their spin rate and blowing apart. Thanks to observations using the Rossi Explorer, they now speculate that the cause is gravitational radiation.

'Nature has set a speed limit for pulsar spins,' said Prof. Deepto Chakrabarty of the Massachusetts Institute of Technology in Cambridge, lead author on the journal article. 'Just like cars speeding on a highway, the fastest-spinning pulsars could technically go twice as fast, but something stops them before they break apart. It may be gravitational radiation that prevents pulsars from destroying themselves.' The faster a pulsar spins, its spherical shape changes, developing distortions in its crust and allowing it to radiate gravitational waves. Eventually, the pulsar's spin rate balances out when the momentum lost in gravitational radiation is matched by momentum gained when gas is pulled in from the nearby star.

A short burst of X-ray light, emitted by a massive thermonuclear explosion on some pulsars' surface, serves as a direct measure of spin rate. Scientists have studied these 'burst oscillations' from 11 pulsars and have found none spinning faster than 619 times per second. From a statistical analysis of those pulsars, they concluded that pulsars must stay below 760 revolutions per second in order to stay intact. Gravitational radiation has not been directly detected just yet, but the Laser Interferometer Gravitational-Wave Observatory (LIGO) in Hanford, Wash., and in Livingston, La., are expected to make the detection and study of the relationship between pulsars and gravitational radiation much easier.