ScienceIQ.com

How Many Cows Does It Take To String A Tennis Racquet?

How many cows does it take to string a tennis racquet? According to Professor Rod Cross of the University of Sydney, an expert on the physics and technology of tennis, the answer is 3. Many top professional tennis players still prefer to string their racquets with natural gut instead of synthetics due to natural gut's soft feel, high elasticity and ...

Continue reading...

TennisRacquet
Biology

Man-Eating Plants

What's for dinner? A bowl of salad greens, corn on the cob and strawberry shortcake for dessert. And it's not just us, most animals and insects love to munch, crunch and dine on plants. But there is a ... Continue reading

ManEatingPlants
Physics

Newton's Three Laws of Motion

The motion of an aircraft through the air can be explained and described by physical principals discovered over 300 years ago by Sir Isaac Newton. Newton worked in many areas of mathematics and ... Continue reading

NewtonsThreeLawsofMotion
Geology

Pyroclastic Flows: Deadly Rivers of Rock

A volcano, during a violent eruption, blasts massive amounts of heated rock fragments, hot gas and ash out vents and collapsing domes. This sudden outpouring of superheated material reaches ... Continue reading

VolcanoFlows
Science

Serendipity In Science

Most scientists accept the notion that serendipity plays a major role in their work. Too many discoveries have been, after all, the result of 'lucky accidents.' In the 16th century, for example, ... Continue reading

SerendipityInScience

Tick-Tock Atomic Clock

AtomicClockModern navigators rely on atomic clocks. Instead of old-style springs or pendulums, the natural resonances of atoms -- usually cesium or rubidium -- provide the steady 'tick' of an atomic clock. The best ones on Earth lose no more than one second in millions of years. Sailers, truck drivers, soldiers, hikers, and pilots ... they all rely on atomic clocks, even if they don't know it. Anyone who uses the Global Positioning System (GPS) benefits from atomic time. Each of the 24 GPS satellites carries 4 atomic clocks on board. By triangulating time signals broadcast from orbit, GPS receivers on the ground can pinpoint their own location.

Tiny instabilities in those orbiting clocks contribute at least a few meters of error to single-receiver GPS measurements. Making the clocks smaller (so that more of them can fit on each satellite) and increasing their stability could reduce such errors to fractions of a meter. Pilots landing on narrow airstrips at night would appreciate the improvement. So would surveyors, prospectors, search and rescue teams ... and farmers. 'Precision farmers' already use GPS-guided tractors to dispense custom-doses of water, fertilizer and pesticides over garden-sized plots. Better GPS data could guide those tractors to individual rows or perhaps even to individual plants for special care.