ScienceIQ.com

Torque

A force may be thought of as a push or pull in a specific direction. When a force is applied to an object, the object accelerates in the direction of the force according to Newton's laws of motion. The object may also experience a rotation depending on how the object is confined and where the force is applied. A hanging door is an excellent example ...

Continue reading...

Torque
Biology

Is Your Immune System Educated?

When spring comes, do you hide indoors because your eyes and nose water, and you can't stop sneezing? Do cats or dogs cause you the same symptoms? Have you wondered why you have allergies and other ... Continue reading

ImmuneSystem
Physics

Your Own Personal Rainbow?

Did you know that no two people ever see the very same rainbow? It's true. Rainbows are formed when light enters a water droplet, reflects once inside the droplet, and is reflected back to our eyes ... Continue reading

Rainbows
Biology

What Are Blood Types, and Why Are They Important?

If your medical report reads A, Rh+, M, s, P1, Lua, K+, Kp(a-b+), Le(a-b+). Fy(a+), Jk(a+b+), don't run for a foreign language dictionary. The letters aren't Greek. They are simply the names given to ... Continue reading

BloodTypes
Engineering

Liquid Crystal Communication

The Information Age rides on beams of carefully controlled light. Because lasers form the arteries of modern communications networks, dexterous manipulation of light underpins the two definitive ... Continue reading

LiquidCrystalCommunication

Black Hole Sound Waves

BlackHoleSoundWavesAstronomers using NASA's Chandra X-ray Observatory have found, for the first time, sound waves from a supermassive black hole. The 'note' is the deepest ever detected from any object in our Universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster of galaxies located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. Earlier observations had revealed the prodigious amounts of light and heat created by black holes. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance because the note is 57 octaves lower than middle-C.

For comparison, a typical piano contains only about seven octaves. At a frequency over a million billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the Universe. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays ought to cool because X-rays carry away some of the gas' energy. Dense gas near the cluster's center where X-ray emission is brightest should cool the fastest. As the gas cools, say researchers, the pressure should drop, causing gas from further out to sink toward the center. Trillions of stars ought to be forming in these gaseous flows. Yet scant evidence has been found for flows of cool gas or for star formation. This forced astronomers to invent several different ways to explain how gas contained in clusters remained hot.

None of them were satisfactory. Previous Chandra observations of the Perseus cluster reveal two vast, bubble-shaped cavities extending away from the central black hole. These cavities have been formed by jets of material pushing back the cluster gas. The jets, which are a counter-intuitive side effect of the black hole gobbling matter in its vicinity, have long been suspected of heating the surrounding gas. But the exact mechanism was unknown. The sound waves, seen spreading out from the cavities in the recent Chandra observation, could provide this heating mechanism. A tremendous amount of energy is needed to generate the cavities, as much as the combined energy from 100 million supernovas. Much of this energy is carried by the sound waves and should dissipate in the cluster gas, keeping the gas warm and possibly preventing a cooling flow. If so, the B-flat pitch of the sound wave, 57 octaves below middle-C, would have remained roughly constant for about 2.5 billion years.