ScienceIQ.com

The Strange Spires of Callisto

When NASA's adventurous Galileo spacecraft skimmed a mere 138 km, (123 miles) above the surface of Jupiter's moon Callisto, onboard cameras captured the sharpest pictures ever of that moon's mysterious landscape. Scientists have since examined the images, and what they found is surprising. Callisto is peppered with strange icy features -- spires ...

Continue reading...

CallistoSpires
Chemistry

What Is A Mole?

No, it's not the furry little burrowing rodent with the star-shaped nose, from 'Wind In The Willows'... In chemistry, a mole is strictly defined as the number of particles of a pure material equal to ... Continue reading

WhatIsAMole
Geology

A Undersea View of Our Earth's Geography

The ocean bottom is divided into three major areas: the continental shelf, the continental slope, and the deep ocean basin. The continental shelf extends underwater from each of the major land masses ... Continue reading

UnderseaEarthsGeography
Physics

The Physics of Sandcastles

Give a plastic bucket and a shovel to a child, then turn her loose on a beach full of sand. She'll happily toil the day away building the sandcastle to end all sandcastles. It's pure fun. It's also ... Continue reading

Sandcastles
Physics

Your Own Personal Rainbow?

Did you know that no two people ever see the very same rainbow? It's true. Rainbows are formed when light enters a water droplet, reflects once inside the droplet, and is reflected back to our eyes ... Continue reading

Rainbows

What Are Composite Materials?

CompositeMaterialsA composite material is one in which two or more separate materials have been combined to make a single construct having more desirable properties. What many people don't realize is that composites are probably the most common structural materials in the world, and have always been an essential part of their lives. Concrete, paper, corrugated cardboard, plywood, fiberglass, bamboo, cornstalks, trees, bricks... all are composite materials. Far from being a new invention, composite materials are the main structural elements of nature. Take a close look at the grain and structure of a piece of wood, and you will see how its strength comes from a structure of fibers bound together side by side.

Man's first use of such composite materials was probably the adobe brick. Mud or clay can be shaped and dried into a hard block, but that kind of block has little load bearing strength and can be easily crushed by the weight of other blocks on top of it. At some point in time, it was found that mixing dried grass or straw into the mud produced a brick with superior properties, a brick that could bear much greater loads without being crushed than a brick of plain dried mud could bear.

Plywood is another example. In plywood, thin sheets, or 'plies' of wood are laminated together. In each ply, the wood fibers runs in one particular direction, and each ply is aligned in a different direction than the adjacent plies. This gives the resulting stack of wood plies an optimum strength in all directions, making plywood a very versatile and useful structural material. A third example of a composite material is reinforced concrete, used in the construction of bridges and buildings. Steel rods are encased in a matrix of concrete, producing reinforced concrete, which has much better strength and load-bearing properties than concrete that has not been reinforced.