ScienceIQ.com

Tea Time!

Did you know that a disease of coffee plantations made the British tea drinkers? In the 1700s Britain had many coffeehouses that served as popular social gathering places to discuss current events and conduct business. For example, the famous insurance company 'Lloyds of London' was started by patrons of Edward Lloyd's coffeehouse about 1774. These ...

Continue reading...

TeaTime
Engineering

Space Lasers Keep Earth's Air Clean

Space laser technology is coming to our smokestacks and automobiles. Leave it to NASA to take its inventions to another level, helping to keep our air clean and breathable. A recent NASA invention, ... Continue reading

SpaceLasersKeepEarthsAirClean
Biology

A Creature Only A Mother Could Love?

A creature only a mother could love isn't even much loved by its own mother. The Komodo dragon, weighing as much as 300 lbs. (136 kgs) or more, eats more than half its own weight in one meal. It ... Continue reading

MotherLove
Medicine

What Is A Cerebral Aneurysm?

A cerebral aneurysm is the dilation, bulging or ballooning out of part of the wall of a vein or artery in the brain. The disorder may result from congenital defects or from other conditions such as ... Continue reading

WhatIsACerebralAneurysm
Biology

Wetlands Top Ecosystem

Wetlands are areas where water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season. ... Continue reading

Wetlands

X-ray Telescopes

XrayTelescopesX-rays are a highly energetic form of light, not visible to human eyes. Light can take on many forms -- including radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation. Very low temperatures (hundreds of degrees below zero Celsius) produce mostly low energy radio and microwave photons, whereas cool bodies like ours (about 30 degrees Celsius) produce largely infrared radiation. Objects at very high temperatures (millions of degrees Celsius) emit most of their energy as x-rays.

Much of the matter in the universe cannot be seen by any other telescope. X-ray telescopes are the only way we can observe extremely hot matter with temperatures of millions of degrees Celsius. It takes gigantic explosions, or intense magnetic or gravitational fields to energize particles to these high temperatures. Where do such conditions exist? In an astonishing variety of places, ranging from the vast spaces between galaxies to the bizarre, collapsed worlds of neutron stars and black holes.

X-rays do not reflect off mirrors the same way that visible light does. Because of their high-energy, X-ray photons penetrate into the mirror in much the same way that bullets slam into a wall. Likewise, just as bullets ricochet when they hit a wall at a grazing angle, so too will x-rays ricochet off mirrors. These properties mean that X-ray telescopes must be very different from optical telescopes. The mirrors have to be precisely shaped and aligned nearly parallel to incoming x-rays. Thus they look more like barrels than the familiar dish shape of optical telescopes.