ScienceIQ.com

X-Ray Astronomy vs. Medical X-Rays

It's natural to associate the X-rays from cosmic objects with an X-ray from the doctor's office, but the comparison is a bit tricky. A doctor's X-ray machine consists of two parts: an X-ray source at one end, and a camera at the other. The arm or mouth or other body part to be examined is placed in between these two parts. X-rays from the source ...

Continue reading...

XRayAstronomyvsMedicalXRays
Biology

West Indian Manatee, (Trichechus manatus)

Christopher Columbus was the first European to report seeing a manatee in the New World. To Columbus, and other sailors who had been at sea for a long time, manatees were reminiscent of mermaids -- ... Continue reading

WestIndianManatee
Astronomy

Exercising In Space

What did astronaut Shannon Lucid like least about her six months on Space Station Mir? The daily exercise. 'It was just downright hard,' she wrote in Scientific American (May 1998). 'I had to put on a ... Continue reading

ExercisingInSpace
Astronomy

Near-Earth Supernovas

Supernovas near Earth are rare today, but during the Pliocene era of Australopithecus supernovas happened more often. Their source was an interstellar cloud called 'Sco-Cen' that was slowly gliding by ... Continue reading

Supernovas
Biology

It All Started With The Colwart

Do you like cabbage. No? How about broccoli? Perhaps you crave brussel sprouts. Did you know that all these vegetables, plus kohlrabi, kale, cauliflower and collard greens, trace their origins from ... Continue reading

ItAllStartedWithTheColwart

Origins Of The Meter

OriginsOfTheMeterThe origins of the meter go back to at least the 18th century. At that time, there were two competing approaches to the definition of a standard unit of length. Some suggested defining the meter as the length of a pendulum having a half-period of one second; others suggested defining the meter as one ten-millionth of the length of the earth's meridian along a quadrant (one fourth the circumference of the earth). In 1791, soon after the French Revolution, the French Academy of Sciences chose the meridian definition over the pendulum definition because the force of gravity varies slightly over the surface of the earth, affecting the period of the pendulum.

Thus, the meter was intended to equal 10-7 or one ten-millionth of the length of the meridian through Paris from pole to the equator. However, the first prototype was short by 0.2 millimeters because researchers miscalculated the flattening of the earth due to its rotation. Still this length became the standard. In 1889, a new international prototype was made of an alloy of platinum with 10 percent iridium, to within 0.0001, that was to be measured at the melting point of ice. In 1927, the meter was more precisely defined as the distance, at 0, between the axes of the two central lines marked on the bar of platinum-iridium kept at the BIPM, and declared Prototype of the meter by the 1st CGPM, this bar being subject to standard atmospheric pressure and supported on two cylinders of at least one centimeter diameter, symmetrically placed in the same horizontal plane at a distance of 571 mm from each other.

The 1889 definition of the meter, based upon the artifact international prototype of platinum-iridium, was replaced by the CGPM in 1960 using a definition based upon a wavelength of krypton-86 radiation. This definition was adopted in order to reduce the uncertainty with which the meter may be realized. In turn, to further reduce the uncertainty, in 1983 the CGPM replaced this latter definition by the following definition: the meter is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second. Note that the effect of this definition is to fix the speed of light in vacuum at exactly 299 792 458 ms-1. The original international prototype of the meter, which was sanctioned by the 1st CGPM in 1889, is still kept at the BIPM under the conditions specified in 1889.