ScienceIQ.com

Ozone: Good Up High, Bad Nearby

Ozone is a gas that forms in the atmosphere when 3 atoms of oxygen are combined (03). It is not emitted directly into the air, but at ground level is created by a chemical reaction between oxides of nitrogen (NOx), and volatile organic compounds (VOC) in the presence of sunlight. Ozone has the same chemical structure whether it occurs high above ...

Continue reading...

Ozone
Chemistry

Exploding Fertilizer

Atmospheric nitrogen is a diatomic molecule of just two nitrogen atoms bonded very strongly to each other. Nitrogen, in compound with other elements, is just a single nitrogen atom bonded very weakly, ... Continue reading

ExplodingFertilizer
Astronomy

NASA Spacecraft Reveals Surprising Anatomy Of A Comet

Findings from a historic encounter between NASA's Stardust spacecraft and a comet have revealed a much stranger world than previously believed. The comet's rigid surface, dotted with towering ... Continue reading

AnatomyOfAComet
Astronomy

The Constellations

The random arrangement of the stars visible to the naked eye has remained essentially unchanged since the time of the first written records. One of the earliest complete lists we have was compiled in ... Continue reading

TheConstellations
Astronomy

Starburst, No, Not The Candy

A starburst galaxy is a galaxy experiencing a period of intense star forming activity. Although this activity may last for ten million years or more, that is like a month in the life of a ten billion ... Continue reading

StarburstAstro

An Old Science Experiment On The Moon

AnOldScienceExperimentOnTheMoonThe most famous thing Neil Armstrong left on the moon 35 years ago is a footprint, a boot-shaped depression in the gray moondust. Millions of people have seen pictures of it, and one day, years from now, lunar tourists will flock to the Sea of Tranquility to see it in person. Peering over the rails ... 'hey, mom, is that the first one?' Will anyone notice, 100 feet away, something else Armstrong left behind? Ringed by footprints, sitting in the moondust, lies a 2-foot wide panel studded with 100 mirrors pointing at Earth: the 'lunar laser ranging retroreflector array.' Apollo 11 astronauts Buzz Aldrin and Neil Armstrong put it there on July 21, 1969, about an hour before the end of their final moonwalk. Thirty-five years later, it's the only Apollo science experiment still running.

University of Maryland physics professor Carroll Alley was the project's principal investigator during the Apollo years, and he follows its progress today. 'Using these mirrors,' explains Alley, 'we can 'ping' the moon with laser pulses and measure the Earth-moon distance very precisely. This is a wonderful way to learn about the moon's orbit and to test theories of gravity.' Here's how it works: A laser pulse shoots out of a telescope on Earth, crosses the Earth-moon divide, and hits the array. Because the mirrors are 'corner-cube reflectors,' they send the pulse straight back where it came from. 'It's like hitting a ball into the corner of a squash court,' explains Alley. Back on Earth, telescopes intercept the returning pulse--'usually just a single photon,' he marvels. The round-trip travel time pinpoints the moon's distance with staggering precision: better than a few centimeters out of 385,000 km, typically.

Targeting the mirrors and catching their faint reflections is a challenge, but astronomers have been doing it for 35 years. A key observing site is the McDonald Observatory in Texas where a 0.7 meter telescope regularly pings reflectors in the Sea of Tranquility (Apollo 11), at Fra Mauro (Apollo 14) and Hadley Rille (Apollo 15), and, sometimes, in the Sea of Serenity. In this way, for decades, researchers have carefully traced the moon's orbit, and they've learned some remarkable things, among them: (1) The moon is spiraling away from Earth at a rate of 3.8 cm per year. Why? Earth's ocean tides are responsible. (2) The moon probably has a liquid core. (3) The universal force of gravity is very stable. Newton's gravitational constant G has changed less than 1 part in 100-billion since the laser experiments began.