ScienceIQ.com

Sibling Rivalry: A Mars/Earth Comparison

Scientific understanding is often a matter of making the right comparisons. In terms of studying the Earth, one of the best comparative laboratories exists one planet over--on Mars. In many ways, the study of Mars provides Earth bound scientists with a control set as they look at the processes of climate change, geophysics, and the potential for ...

Continue reading...

MarsEarthComparison
Biology

A Creature Only A Mother Could Love?

A creature only a mother could love isn't even much loved by its own mother. The Komodo dragon, weighing as much as 300 lbs. (136 kgs) or more, eats more than half its own weight in one meal. It ... Continue reading

MotherLove
Geology

What Causes Ice Ages....Or Global Warming?

We know from the rock record and cores taken from polar ice caps that periods of global cooling (ice ages, or periods of glaciation) have alternated with warmer, more temperate periods having climates ... Continue reading

IceAgesGlobalWarming
Geology

A National Park of Caves

Carlsbad Caverns National Park has been designated as a world heritage site because of its unique and surprising geology - a story more than 250 million years old that can be read both above and below ... Continue reading

ANationalParkofCaves
Geology

Old Faithful - Thar She Blows!

Hot springs are what you get when you mix ground water with underground volcanic activity. They may be very acidic, containing sulphurous compounds or just mineral laden. Hot springs were the original ... Continue reading

OldFaithful

The Melting Point

TheMeltingPointPhysical properties of a material fall into two categories: intrinsic properties determined by the structure of the particular molecule, and bulk properties characteristic of quantities of molecules together as bulk solids, liquids, or gases. The melting point of a pure substance is a bulk property and represents the point of transition of physical state from solid to liquid. Molecules of a substance must possess a specific amount of thermal energy in order for the solid-to-liquid phase transition to occur. The energy of a molecule is expressed in the vibrations of the interatomic bonds. The more energy a molecule possesses, the more energetic are the vibrations of the bonds within the molecule. In the solid state, the mobility of the molecules is restricted due to intermolecular attractions that keep the molecules within an ordered array (or crystal structure).

As the thermal energy contained by a molecule increases, the vibrations of the bonds (and hence of the molecules themselves) become more energetic. Eventually a point is reached at which the intermolecular attractive forces can no longer contain the molecular motion within an ordered array. At this point the ordered array breaks down and the molecules become much more mobile relative to each other. The material melts. Since the melting point of a material is demonstrated by the transition from the solid phase to the liquid phase, it stands to reason that every material that can exist in a solid phase and in a liquid phase must have a melting point. The melting point occurs at a different temperature for most materials. Water melts at 0, sodium chloride melts at 801, and hydrogen melts at -259.14.

The term 'melting point' suggests and is usually used to indicate the change of state from solid to liquid due to an increase in temperature. When the temperature is decreased, the phase transition occurs from the liquid state to the solid state, molecular vibrations become less energetic until the intermolecular attractive forces are able to contain them within an ordered array (or crystal). This transition is called the 'freezing point' of the material. The melting point and freezing point of a pure compound occur at the same temperature. The use of either term is acceptable but generally implies an appropriate methodology such as the use of laboratory equipment specific for the observation of the melting behavior of solids or the freezing behavior of liquids. Generally, 'melting point' is used for materials that are solids at room temperature, and 'freezing point' is used for materials that are liquids at room temperature.