ScienceIQ.com

Voyager Phone Home

After historic visits to Jupiter and Saturn, Voyager 1 is now on course to be the first human-made object to leave our solar system. In space for more than 25 years, it has already traveled farther than any other spacecraft. It is not clear when Voyager 1 will reach the heliopause boundary, where the influence of our Sun ends. The boundary is ...

Continue reading...

Voyager
Engineering

Drip, Drip Water Clocks

Water clocks were among the earliest timekeepers that didn't depend on the observation of celestial bodies. One of the oldest was found in the tomb of the Egyptian pharaoh Amenhotep I, buried around ... Continue reading

DripDripWaterClocks
Geology

Man Made Clouds

There are many different types of clouds in the sky, but did you know that some of them are man-made? 'Contrails' are the long, thin clouds that are left by airplanes as they fly past. Contrails ... Continue reading

ManMadeClouds
Mathematics

Leaps and Bounds

Leap years are years with 366 days, instead of the usual 365. Leap years are necessary because the actual length of a year is 365.242 days, not 365 days, as commonly stated. Basically, leap years ... Continue reading

LeapsandBounds
Astronomy

It's Gonna Hit Us... Or Is It?

Recently, some astronomers were concerned that a newly discovered asteroid might hit Earth in 2017. This was big news because even the impact of a modest-sized asteroid could have a devastating ... Continue reading

MeteorHit

Sonic Boom

SonicBoomThey sound like thunder, but they're not. They're sonic booms, concentrated blasts of sound waves created as vehicles travel faster than the speed of sound. To understand how the booms are created, look to the ocean. On the sea, there are small ripples in the water. As a boat slowly passes through the ripples, they spread out ahead of the boat. As the boat moves faster, it breaks through the ripples more quickly, forming waves. If it goes fast enough, the waves can't spread out fast enough, and they form a wake, which is much larger than a single wave. It is formed out of all the little waves that would have spread out ahead of the boat, but couldn't, because of the boat's speed. Now picture the same thing happening in the air. Instead of a boat, there is an airplane moving through the sky. When a plane travels through the air, it produces sound waves. You can't see sound waves like you can see waves of water, but they're still there.

If the plane is traveling slower then the speed of sound, then sound waves can spread out ahead of the plane. If it breaks the sound barrier and flies faster than the speed of sound, it produces a sonic boom when it flies past. The boom is the wake of the plane's sound waves. All the sound waves that would have normally spread out ahead of the plane are combined together, and you hear the boom. When you're on the shore of the ocean and a boat zooms past, at first there is no disturbance in the water, but shortly after, a large wave from the wake crashes up to the shore. When a plane flies past at supersonic speeds, the same thing happens. Instead of the large wake wave, you'll hear a sonic boom. Another way to think of sonic booms is to imagine all the molecules that make up our air. When planes fly through the air at moderate speeds, the molecules have time to move aside to let the plane through.

If the aircraft goes too fast, though, the molecules can't move aside, and the plane slams right into them--boom! A plane traveling below the speed of sound is going at subsonic speeds. Traveling at the speed of sound is transonic; speeds one times the speed of sound are supersonic, and hypersonic speeds are more than five times the sound barrier. Mach is another way of referring to the speed of sound. Flying at Mach 2, for instance, means you're flying at twice the speed of sound. How fast is the speed of sound? The answer depends on several factors, including how high the airplane may be flying--air becomes less dense at higher elevations, and it's easier for sound waves to travel. The generally accepted figure for the speed of sound is 1,220 kilometers (760 miles) per hour, which is the speed of sound at sea level.