ScienceIQ.com

Submarine Volcanoes

Submarine volcanoes and volcanic vents are common features on certain zones of the ocean floor. Some are active at the present time and, in shallow water, disclose their presence by blasting steam and rock-debris high above the surface of the sea. Many others lie at such great depths that the tremendous weight of the water above them results in ...

Continue reading...

SubmarineVolcanoes
Physics

The Physics of Sandcastles

Give a plastic bucket and a shovel to a child, then turn her loose on a beach full of sand. She'll happily toil the day away building the sandcastle to end all sandcastles. It's pure fun. It's also ... Continue reading

Sandcastles
Science

Subrahmanyan Chandrasekhar

NASA's premier X-ray observatory was named the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar (pronounced: su/bra/mon'/yon chandra/say/kar). ... Continue reading

SubrahmanyanChandrasekhar
Science

Serendipity In Science

Most scientists accept the notion that serendipity plays a major role in their work. Too many discoveries have been, after all, the result of 'lucky accidents.' In the 16th century, for example, ... Continue reading

SerendipityInScience
Geology

Is The Sea Really On The Level?

When we measure the height of mountains, we measure from a constant number called sea level. For instance Mount Whitney in California is 14,494 feet (4,418 m) above sea level. We start at 0 feet and ... Continue reading

SeaLevel

Pointing North

PointingNorthThe needle of a compass is a small magnet, one that is allowed to pivot in the horizontal plane. The needle experiences a torque from the ambient magnetic field of the Earth. The reaction to this torque is the needle's preferred alignment with the horizontal component of the geomagnetic field. The 'north' end of the compass needle is simply the north end of the magnet, and it is the end of the compass needle that points in the general direction of the geographic north pole; naturally, the 'south' end of the compass needle is the south end of the magnet and it points in the opposite direction, towards the general direction of the geographic south pole. Having said this, the preferred directionality of a compass can be affected by local perturbations in the magnetic field, like those set up by (say) a near-by electrical system; a compass can also be affected by local magnetization of the Earth's crust, particularly near large igneous or volcanic rock deposits.

At most places on the Earth's surface, the compass doesn't point exactly toward geographic north. The deviation of the compass from true north is an angle called 'declination'. It is a quantity that has been a nuisance to navigators for centuries, especially since it varies with geographic location. It might surprise you to know that at very high latitudes the compass can even point south! Declination is simply a manifestation of the complexity of the geomagnetic field. The field is not perfectly symmetrical, it has non-dipolar 'ingredients', and the dipole itself is not perfectly aligned with the rotational axis of the Earth.

Interestingly, if you were to stand at the north geomagnetic pole, your compass, held horizontally as usual, would not have a preference to point in any particular direction, and the same would be true if you were standing at the south geomagnetic pole. Moreover, if you were to hold your compass on its side the north-pointing end of the compass would point down at the north geomagnetic pole, and it would point up at the south geomagnetic pole.