ScienceIQ.com

What are Bacillariophyta?

Bacillariophyta are diatoms. All diatoms are single-celled organisms. They are microscopic, glassy organisms that photosynthesize for food, like plants. Diatoms live in the sediments of freshwater, such as lakes, and in marine environments, such as the ocean. Diatoms are also called microfossils, because of their size and because they date all the ...

Continue reading...

WhatareBacillariophyta
Astronomy

X-ray Telescopes

X-rays are a highly energetic form of light, not visible to human eyes. Light can take on many forms -- including radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation. ... Continue reading

XrayTelescopes
Medicine

Malaria and Sickle Cell Anemia

Sickle cell anemia is a genetic disorder in which the red blood cells collapse into a 'sickle' shape and cannot carry oxygen very well. They also tend to get stuck in narrow blood vessels, causing ... Continue reading

MalariaSickleCell
Biology

The Dogma of Life

Dogmas are authoritative tenets common in religion and philosophy. But in molecular biology? Molecular biology has a central dogma, proposed by Francis Crick in 1953, that says that genetic ... Continue reading

MolecularBiology
Medicine

When Motherhood Means More than One

These days, twins, triplets, and other multiple births are becoming more common, but how do they happen? Fraternal twins (or triplets, quadruplets, or more) develop when two or more eggs are ... Continue reading

MotherhoodMeansMoreOne

The Importance Of Clouds And Aerosols To Climate Change

CloudsAerosolsEverything, from an individual person to Earth as a whole, emits energy. Scientists refer to this energy as radiation. As Earth absorbs incoming sunlight, it warms up. The planet must emit some of this warmth into space or increase in temperature. Two components make up the Earth's outgoing energy: heat (or thermal radiation) that the Earth's surface and atmosphere emit; and sunlight (or solar radiation) that the land, ocean, clouds and aerosols reflect back to space. The balance between incoming sunlight and outgoing energy determines the planet's temperature and, ultimately, climate. Both natural and human-induced changes affect this balance, called the Earth's radiation budget.

Clouds affect the radiation budget directly by reflecting sunlight into space (cooling the Earth) or absorbing sunlight and heat emitted by the Earth. When clouds absorb sunlight and heat, less energy escapes to space and the planet warms. To understand how clouds impact the energy budget, scientists need to know the composition of cloud particles, the altitude of clouds and the extent to which clouds at different altitudes overlap each other. Both natural processes and human activities produce aerosols. They either reflect or absorb energy, depending on their size, chemical composition and altitude. The haze layer that is commonly seen in the summertime is one example of an aerosol that primarily reflects sunlight. Soot emitted by diesel engines is an example of an aerosol that absorbs sunlight. The reflection and absorption of energy by aerosols act in a direct way to change the balance between incoming and outgoing energy. These effects are called direct aerosol radiative forcing.

Aerosols also can affect the Earth's radiation budget indirectly by modifying the characteristics of clouds. Cloud particles almost always form around aerosols such as natural sea salt particles or human-made sulfate particles. The presence of additional aerosols can change the way clouds radiate energy and the length of time they stay intact. A good example is the way that exhaust particles emitted into the atmosphere by ships can increase the brightness of clouds along their course.