ScienceIQ.com

Water, Water Everywhere, But Not A Drop To Drink

That line, from The Rime of the Ancient Mariner, by Samuel Taylor Coleridge, captures a truism -- we cannot drink salt water to quench our thirst. But why not? The answer lies in understanding the process of osmosis. Osmosis is the process whereby water molecules move from an area of higher concentration to an area of lower concentration. Osmosis ...

Continue reading...

WaterWater
Biology

We Live In Two Distinct Visual Worlds

Have you ever wondered what it would be like to live on a planet where all the colors were different from what you're used to? Actually, you already have a lot of experience with two different worlds ... Continue reading

VisualWorlds
Physics

The Sound of Turbulence

Do you ever watch the water tornado that forms in a draining bathtub? Woe unto any rubber ducky floating aimlessly in the vicinity; the water's force will pull it down into the tornado. The center of ... Continue reading

TheSoundofTurbulence
Astronomy

Neutron Stars

Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of ... Continue reading

NeutronStars
Geology

A Great Sunset Takes A Few Clouds

Although the twilight sky can certainly inspire awe even when it is devoid of clouds, the most memorable sunsets tend to be those with at least a few clouds. Clouds catch the last red-orange rays of ... Continue reading

AGreatSunsetTakesAFewClouds

Hydropower Basics

HydropowerBasicsFlowing water creates energy that can be captured and turned into electricity. This is called hydropower. Hydropower is currently the largest source of renewable power, generating nearly 10% of the electricity used in the United States. The most common type of hydropower plant uses a dam on a river to store water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which, in turn, activates a generator to produce electricity. But hydropower doesn't necessarily require a large dam. Some hydropower plants just use a small canal to channel the river water through a turbine.

Another type of hydropower plant--called a pumped storage plant--can even store power. The power is sent from a power grid into the electric generators. The generators then spin the turbines backward, which causes the turbines to pump water from a river or lower reservoir to an upper reservoir, where the power is stored. To use the power, the water is released from the upper reservoir back down into the river or lower reservoir. This spins the turbines forward, activating the generators to produce electricity.

Hydropower facilities in the United States can generate enough power to supply 28 million households with electricity, the equivalent of nearly 500 million barrels of oil. The total U.S. hydropower capacity--including pumped storage facilities--is about 95,000 megawatts. Researchers are working on advanced turbine technologies that will not only help maximize the use of hydropower but also minimize adverse environmental effects.