ScienceIQ.com

Smoke Detectors

How does a smoke detector 'know' when there is a fire? Smoke detectors use one of two different methods to do their job, and for both methods the basic operating assumption is the cliche 'where there's smoke there's fire'. Smoke is of course, essential to the operation of a smoke detector, and it is the physical interaction of smoke particles with ...

Continue reading...

SmokeDetectors
Chemistry

Table Salt - It's All In The Ions

All elements are defined by their individual atoms, which are in turn identified by the number of protons in the nucleus of each atom. Since protons are carriers of positive electrical charge, there ... Continue reading

TableSaltItsAllInTheIons
Engineering

Nothing Backwards About It

Almost anyone who's seen a picture of the experimental X-29 aircraft will remember it. Its unique wings make it one of the most distinctive aircraft designs ever. Rather than sticking straight out or ... Continue reading

NothingBackwardsAboutIt
Biology

Diadromous Fish

Diadromous fish are fish that migrate between freshwater and saltwater. The migration patterns differ for each species and have seasonal and lifecycle variations. Only one percent of all fish in the ... Continue reading

DiadromousFish
Biology

West Nile Virus Spreads Through United States

Viruses have been the scourge of humankind throughout history. Our most feared diseases, AIDS, smallpox, rabies and even the common cold, are all caused by viruses. Now, a dangerous Old World virus ... Continue reading

WestNileVirus

What Is A Coccolithophore?

WhatIsACoccolithophoreLike any other type of phytoplankton, coccolithophores are one-celled marine plants that live in large numbers throughout the upper layers of the ocean. Unlike any other plant in the ocean, coccolithophores surround themselves with a microscopic plating made of limestone (calcite). These scales, known as coccoliths, are shaped like hubcaps and are only three one-thousandths of a millimeter in diameter. What coccoliths lack in size they make up in volume. At any one time a single coccolithophore is attached to or surrounded by at least 30 scales. Additional coccoliths are dumped into the water when the coccolithophores multiply asexually, die or simply make too many scales. In areas with trillions of coccolithophores, the waters will turn an opaque turquoise from the dense cloud of coccoliths. Scientists estimate that the organisms dump more than 1.5 million tons (1.4 billion kilograms) of calcite a year, making them the leading calcite producers in the ocean.

Most phytoplankton need both sunlight and nutrients from deep in the ocean. The ideal place for them is on the surface of the ocean in an area where plenty of cooler, nutrient-carrying water is upwelling from below. In contrast, the coccolithophores prefer to live on the surface in still, nutrient-poor water in mild temperatures. Coccolithophores do not compete well with other phytoplankton. Yet unlike their cousins, coccolithophores do not need a constant influx of fresh food to live. They often thrive in areas where their competitors are starving. Typically, once they are in a region, they dominate and become more than 90 percent of the phytoplankton in the area.

Coccolithophores live mostly in subpolar regions. Some other places where blooms occur regularly are the northern coast of Australia and the waters surrounding Iceland. In the past two years, large blooms of coccolithophores have covered areas of the Bering Sea. This surprises many scientists since the Bering Sea is normally a nutrient-rich body of water. Coccolithophores are not normally harmful to other marine life in the ocean. The nutrient-poor conditions that allow the coccolithophores to exist will often kill off much of the larger phytoplankton. Many of the smaller fish and zooplankton that eat normal phytoplankton also feast on the coccolithophores. In nutrient-poor areas where other phytoplankton are scarce, the coccolithophores are a welcome source of nutrition.