ScienceIQ.com

Ants Are Wimpy

It's common knowledge that ants can lift many times their own weight. We are frequently told they can lift 10, 20, or even 50 times their weight. It is most often stated something like this: an ant can lift over its head objects that weigh 20 times what the ant weighs. This is the equivalent of a 220 pound (100 kilogram) man lifting over 4,400 ...

Continue reading...

Ants
Geology

What Are The Differences Between Global Warming, Greenhouse Effect, Greenhouse Warming, And Climate Change?

The term Global Warming refers to the observation that the atmosphere near the Earth's surface is warming, without any implications for the cause or magnitude. This warming is one of many kinds of ... Continue reading

GreenhouseEffectClimate Change
Astronomy

The Brave and Cold Ulysses

Deep space is cold. Very cold. That's a problem--especially if you're flying in an old spaceship. And your power supplies are waning. And the fuel lines could freeze at any moment. Oh, and by the way, ... Continue reading

TheBraveandColdUlysses
Biology

What’s So Different About Ferns?

Most plants reproduce by producing a flower, then seeds. Anthers, considered the male reproductive structure, hold the pollen. The ovum, the female reproductive structure inside the flower, is ... Continue reading

Ferns
Chemistry

Why does popcorn pop?

Popcorn is the most amazing food! It all starts with a kernel only several millimeters in diameter which explodes into a 40-50 times bigger fluffy, tasty, white wonder. The kernel is made of three ... Continue reading

WhyDoesPopcornPop

The Motion of An Aircraft

TheMotionofAnAircraftWe live in a world that is defined by three spatial dimensions and one time dimension. Objects move within this domain in two ways. An object translates, or changes location, from one point to another. And an object rotates, or changes its attitude. In general, the motion of any object involves both translation and rotation. The translations are in direct response to external forces. The rotations are in direct response to external torques or moments (twisting forces).

The motion of an aircraft is particularly complex because the rotations and translations are coupled together; a rotation affects the magnitude and direction of the forces which affect translations. To understand and describe the motion of an aircraft, we usually try to break down the complex problem into a series of easier problems.

We can, for instance, assume that the aircraft translates from one point to another as if all the mass of the aircraft were collected into a single point called the center of gravity. We can describe the motion of the center of gravity by using Newton's laws of motion. There are four forces acting on the aircraft; the lift, drag, thrust, and weight. Depending on the relative magnitudes and directions of these forces, the aircraft will climb (increase in altitude), dive (decrease in altitude), or bank (roll to one side). The magnitude of the aerodynamic forces depends on the attitude of the aircraft during the translations. The attitude depends on the rotations about the center of gravity when the aircraft is trimmed.