ScienceIQ.com

A Sweaty Subject

When human body temperature rises, tiny muscles around the sweat glands in the skin contract, squeezing perspiration - better known as sweat - out through the pores. Sweat is about 99 percent water. Dissolved in it are salts of sodium, potassium, and magnesium. Sweat also contains tiny amounts of waste materials such as urea (the major toxin in ...

Continue reading...

Sweat
Biology

Pass the Iodized Salt Please

Have you ever wondered why common table salt contains iodine? It's because iodine is essential to your health. A diet lacking in sufficient quantities of iodine will lead to the production of a goiter ... Continue reading

IodizedSalt
Astronomy

A Map of the Sky

Niagara Falls, the Grand Canyon, Old Faithful... we know they're spectacular sites, but how did we find out about them? Early explorers took the time to map out the United States and as a result, you ... Continue reading

AMapoftheSky
Mathematics

Unit Of Luminous Intensity (candela)

Originally, each country had its own, and rather poorly reproducible, unit of luminous intensity; it was necessary to wait until 1909 to see a beginning of unification on the international level, when ... Continue reading

Candela
Astronomy

Will the Sun Shine Forever?

The Sun is a huge nuclear furnace. It operates by converting hydrogen into helium. In this process, which is called nuclear fusion, it loses mass and produces energy according to Einstein's famous ... Continue reading

SunLifetime

Delivered by TIR

TIRThe content of this article has been delivered to you via internet fiber-optic links. Today most phone conversations, fax transmissions and almost all internet and email traffic travel at the speed of light between cities and continents via fiber-optics. An optical fiber (or fiber-optics cable) is to light what a copper wire is to electricity, a guiding medium. In an electrical wire, electrons rush from one end of the wire to the other; driven by the electric field. In optical fiber, photons of light travel from one end to the other purely because they have no choice; they are confined to the cable and can not escape! The phenomenon that is responsible for the confinement of the light signal within the core of the fiber-optic cable is called the Total Internal Reflection or TIR.

If you have ever been under water in a swimming pool with your head close to the surface, you have probably noticed that the water-air interface becomes a mirror and you cannot see outside. That is an example of TIR. Basically, whenever you have an interface of two materials (mediums) of different indexes of refraction or optical density, a light beam will fully reflect at this interface if it is trying to escape the denser material at an angle that is larger than a certain critical value.

All optical fibers are basically cylindrical wires made of glass. They have a core (the optically denser medium) and a so-called cladding, which is optically less dense. The cladding fully surrounds the core, like a cylindrical jacket. The light signal is inserted into the core and it travels down the core with occasional TIR reflections from the core-cladding interface. It is almost as if you have a tiny cylindrical mirror from which the light reflects. These total internal reflections are so efficient that the light signal does not lose much of its strength at each reflection as it would when reflecting from an ordinary silver mirror. Thanks to TIR, signals can travel as far as 250 miles (400 km) without needing amplification.