ScienceIQ.com

Silent Earthquakes

Try this demonstration of earthquake movement. Shape modeling clay into two blocks or get two firm sponge blocks. Press the sides of the blocks together while trying to slide them slowly past each other. You may notice that they stick at first, then suddenly slide. This is much like what happens when earth's plates (large sections of earth's solid ...

Continue reading...

SilentEarthquakes
Astronomy

Introduction to Constellations

'Constellation' is the name we give to seeming patterns of starsin the night sky. 'Stella' is the Latin word for star and a constellation is a grouping of stars. In general, the stars in these groups ... Continue reading

IntroductiontoConstellations
Physics

Can Wint-O-Green Lifesavers® Light up Your Life?

Next time you're bored, grab a pack of Wint-O-Green Lifesavers® and lock yourself in the bathroom. Shut the blinds and make sure the room is pitch black. Allow your eyes to adjust and open the pack ... Continue reading

WintOGreenLifesavers
Geology

NASA Explains Dust Bowl Drought

NASA scientists have an explanation for one of the worst climatic events in the history of the United States, the 'Dust Bowl' drought, which devastated the Great Plains and all but dried up an already ... Continue reading

NASAExplainsDustBowlDrought
Engineering

Seeing In The Dark

In the movies, there are all sorts of nasty things that can see perfectly well in the dark. More realistic movies also boast their share of 'beasts' that can see in the dark. Who could forget the ... Continue reading

SeeingInTheDark

Astronomers Glimpse Feeding Of A Galactic Dragon

GalacticDragonA team of radio astronomers has found a cold ring of gas around a supermassive black hole in the fiery nuclear region of quasar galaxy 'QSO I Zw 1,' the most detailed observational evidence yet that gigantic molecular clouds fuel massive star formation in the galactic neighborhood of the black hole. A small fraction of this material might eventually find its way along streamers to the very center, just to be sacrificed to the black hole as fuel to power the brilliant quasar. The ring of gas clouds is likely the site of intense star formation as the clouds collapse under their own gravity, according to the team, and the observation is a significant first step to determining if there is a link between star formation and quasar activity.

Quasars can outshine a trillion suns, and are believed to be the fiercely bright cores of galaxies that harbor black holes weighing in at millions to billions of suns. A black hole, so named because nothing, not even light, can escape its intense gravity once past its boundary, is suspected of being the engine that powers a quasar. While many galaxies have massive black holes lurking in their centers, in quasar galaxies, the black holes 'breathe fire' as they feed on vast amounts of interstellar gas that somehow makes its way into the galactic center. The gas whirls around the black hole before plunging in, like water down a drain. This generates intense friction, heating the gas and causing it to shine brightly.

The ring of gas clouds is about 4,000 light years from the galactic center, rotating around it at about 200 kilometers per second (almost 125 miles/sec.), and contains the mass of more than a billion suns, according to the observation. Despite the unusual optical brilliance of the quasar, these are ordinary characteristics of luminous galaxies, according to the team. Other observations indicate that QSO I Zw 1 is interacting with a neighboring galaxy. Observations of closer galaxies suggest that galactic interactions (collisions and near misses) cause bursts of star formation, and the team is curious about whether such interactions ignite quasar activity as well.