ScienceIQ.com

CALIPSO in 2004

From reports of increasing temperatures, thinning mountain glaciers and rising sea level, scientists know that Earth's climate is changing. But the processes behind these changes are not as clear. Two of the biggest uncertainties in understanding and predicting climate change are the effects of clouds and aerosols (airborne particles). The ...

Continue reading...

CALIPSOin2004
Medicine

What's So Bad About Cholesterol?

Cholesterol has a worse reputation than it deserves. This waxy lipid (a kind of fat) is essential to good health. It builds the membranes that hold cells together. It's used in making certain hormones ... Continue reading

Cholesterol
Geology

Seamounts - Underwater Mountains

Seamounts are undersea mountains that rise from the ocean floor, often with heights of 3,000 m or more. Compared to the surrounding ocean waters, seamounts have high biological productivity, and ... Continue reading

SeamountsUnderwaterMountains
Biology

Will That Be One Hump or Two?

Camels are highly adaptive to their environments. Often called the ships of the desert, they have been domesticated by humans for thousands of years, as beasts of burden and as transportation. What ... Continue reading

Humps
Medicine

What Is Narcolepsy?

Narcolepsy is a sleep disorder than affects about 1 of every 2000 people worldwide. It usually starts in the teens or twenties, but it may begin in childhood. People who have it fall suddenly and ... Continue reading

WhatIsNarcolepsy

Proteins In General

ProteinsInGeneralProteins form our bodies and help direct its many systems. Proteins are fundamental components of all living cells. They exhibit an enormous amount of chemical and structural diversity, enabling them to carry out an extraordinarily diverse range of biological functions.

Proteins help us digest our food, fight infections, control body chemistry, and in general, keep our bodies functioning smoothly. Scientists know that the critical feature of a protein is its ability to adopt the right shape for carrying out a particular function. But sometimes a protein twists into the wrong shape or has a missing part, preventing it from doing its job. Many diseases, such as Alzheimer's and 'mad cow', are now known to result from proteins that have adopted an incorrect structure.

Identifying a protein's shape, or structure, is key to understanding its biological function and its role in health and disease. Illuminating a protein's structure also paves the way for the development of new agents and devices to treat a disease. Yet solving the structure of a protein is no easy feat. It often takes scientists working in the laboratory months, sometimes years, to experimentally determine a single structure. Therefore, scientists have begun to turn toward computers to help predict the structure of a protein based on its sequence. The challenge lies in developing methods for accurately and reliably understanding this intricate relationship.