ScienceIQ.com

How To Calculate The Area Of A Right Cone

The cone is another three-dimensional shape based on the circle. You could think of it as the cross between a circle and a right triangle. Its properties will have features of both shapes, and this makes it easier to understand. One way to visualize a right cone is to think of it as a cylinder that tapers continuously to a point The area of a ...

Continue reading...

AreaOfARight Cone
Biology

Billions and Billions

Nobody really knows how many brain cells anybody has, but typical estimates are around 200 billion. You've heard the late Carl Sagan talk about 'billions and billions of stars' in the universe. Think ... Continue reading

BillionsBillions
Astronomy

Big Fish

The phrase 'big fish eat little fish' may hold true when it comes to planets and stars. Perhaps as many as 100 million of the sun-like stars in our galaxy harbor close-orbiting gas giant planets like ... Continue reading

BigFish
Geology

Crater Lake

Crater Lake: overwhelmingly yet sublimely beautiful. Moody. At times brilliantly blue, ominously somber; at other times buried in a mass of brooding clouds. The lake is magical, enchanting - a remnant ... Continue reading

CraterLake
Biology

Where Do Frogs Go In The Winter?

Mammals are endotherms, meaning they maintain a constant body temperature no matter what the environmental conditions are. For example, humans, dogs and cats are mammals. When the weather gets cold, ... Continue reading

WhereDoFrogsGoInTheWinter

Proteins In General

ProteinsInGeneralProteins form our bodies and help direct its many systems. Proteins are fundamental components of all living cells. They exhibit an enormous amount of chemical and structural diversity, enabling them to carry out an extraordinarily diverse range of biological functions.

Proteins help us digest our food, fight infections, control body chemistry, and in general, keep our bodies functioning smoothly. Scientists know that the critical feature of a protein is its ability to adopt the right shape for carrying out a particular function. But sometimes a protein twists into the wrong shape or has a missing part, preventing it from doing its job. Many diseases, such as Alzheimer's and 'mad cow', are now known to result from proteins that have adopted an incorrect structure.

Identifying a protein's shape, or structure, is key to understanding its biological function and its role in health and disease. Illuminating a protein's structure also paves the way for the development of new agents and devices to treat a disease. Yet solving the structure of a protein is no easy feat. It often takes scientists working in the laboratory months, sometimes years, to experimentally determine a single structure. Therefore, scientists have begun to turn toward computers to help predict the structure of a protein based on its sequence. The challenge lies in developing methods for accurately and reliably understanding this intricate relationship.