ScienceIQ.com

Now You See It, Now You Don't

What we call light is simply a narrow band of electromagnetic radiation that our eyes are sensitive to. This radiation enters our eyes and is conveyed to the brain by the process we call sight. While the mechanics of seeing is quite complex, the process of seeing is, in a different sense, quite extraordinary. Here are two examples. ...

Continue reading...

EMRadiation
Biology

How Do Cacti Survive in That Environment?

Most plants require daily or weekly watering. Some people even give their plants extra nutrients with such products as 'Miracle Grow'. House plants may even come with directions as to how much ... Continue reading

CactiSurvive
Geology

Getting Burned By Acid Rain

If we measure the pH of distilled water, we will find that it is most often in the middle of the pH scale (7) - not too acidic, not too basic. Rainwater, without a lot of outside contaminants, tends ... Continue reading

AcidRain
Biology

Grizzly Bear, (Ursus arctos horribilis)

A symbol of America's wildlands, the grizzly or brown bear is one of the largest North American land mammals. The grizzly bear's historic range covered much of North America from the mid-plains ... Continue reading

GrizzlyBear
Biology

Let Go, Gecko!

Geckos are small, insect-eating, noisy lizards that live in many parts of the world. While geckos have become common pets, the way that they manage to stick to smooth ceilings has remained a mystery. ... Continue reading

Geckos

NASA Explains Dust Bowl Drought

NASAExplainsDustBowlDroughtNASA scientists have an explanation for one of the worst climatic events in the history of the United States, the 'Dust Bowl' drought, which devastated the Great Plains and all but dried up an already depressed American economy in the 1930's. Siegfried Schubert of NASA's Goddard Space Flight Center, Greenbelt, Md., and colleagues used a computer model developed with modern-era satellite data to look at the climate over the past 100 years. The study found cooler than normal tropical Pacific Ocean surface temperatures combined with warmer tropical Atlantic Ocean temperatures to create conditions in the atmosphere that turned America's breadbasket into a dust bowl from 1931 to 1939. These changes in sea surface temperatures created shifts in the large-scale weather patterns and low level winds that reduced the normal supply of moisture from the Gulf of Mexico and inhibited rainfall throughout the Great Plains.

By discovering the causes behind U.S. droughts, especially severe episodes like the Plains' dry spell, scientists may recognize and possibly foresee future patterns that could create similar conditions. For example, La Ninas are marked by cooler than normal tropical Pacific Ocean surface water temperatures, which impact weather globally, and also create dry conditions over the Great Plains. The researchers used NASA's Seasonal-to-Interannual Prediction Project (NSIPP) atmospheric general circulation model and agency computational facilities to conduct the research. The NSIPP model was developed using NASA satellite observations, including; Clouds and the Earth's Radiant Energy System radiation measurements; and the Global Precipitation Climatology Project precipitation data.

The model showed cooler than normal tropical Pacific Ocean temperatures and warmer than normal tropical Atlantic Ocean temperatures contributed to a weakened low-level jet stream and changed its course. The jet stream, a ribbon of fast moving air near the Earth's surface, normally flows westward over the Gulf of Mexico and then turns northward pulling up moisture and dumping rain onto the Great Plains. As the low level jet stream weakened, it traveled farther south than normal. The Great Plains dried up and dust storms formed. The research shed light on how tropical sea surface temperatures can have a remote response and control over weather and climate. It also confirmed droughts can become localized based on soil moisture levels, especially during summer. When rain is scarce and soil dries, there is less evaporation, which leads to even less precipitation, creating a feedback process that reinforces lack of rainfall.