ScienceIQ.com

Sundials, Ancient Clocks

The earliest and simplest form of sundial is the shadow stick. The time of day is judged by the length and position of the stick's shadow. Some nomadic peoples still use this method for timekeeping. The technical name for a shadow stick is a gnomon. As the sun moves through the sky from sunrise to sunset, the shadow of the gnomon rotates ...

Continue reading...

SundialsAncientClocks
Biology

Hey Nose-Brain!

Sex, food, and smell are linked in our brain by ancient pathways governing appetite, odor detection, and hormones. In fact, another name for the brain's limbic system (a primitive ... Continue reading

NoseBrain
Biology

Embryo Transfer and Cloning

Scientists use embryo transfer technology to obtain more offspring from a genetically superior animal. For instance, if a farmer owns a cow that produces excellent milk and wants more cows to produce ... Continue reading

EmbryoTransferandCloning
Engineering

Space Lasers Keep Earth's Air Clean

Space laser technology is coming to our smokestacks and automobiles. Leave it to NASA to take its inventions to another level, helping to keep our air clean and breathable. A recent NASA invention, ... Continue reading

SpaceLasersKeepEarthsAirClean
Biology

What Is A Coccolithophore?

Like any other type of phytoplankton, coccolithophores are one-celled marine plants that live in large numbers throughout the upper layers of the ocean. Unlike any other plant in the ocean, ... Continue reading

WhatIsACoccolithophore

What Makes a Frisbee Fly?

FrisbeeIf you have ever been to the park or the beach, you've probably seen one of these plastic discs flying through the air. We're not talking about a UFO, we're talking about the Frisbee, more commonly known as the flying disc. What makes a Frisbee fly? Just like a bird's wing or the wing of an airplane, shape plays a large part in influencing the flying ability of the Frisbee.

If we take a look at the Frisbee from the side, we can see that the rounded edges of the Frisbee look similar to the front edge of an aircraft wing. We know that the curved upper surface of the wing is what generates (causes) lift. The same principle applies to the Frisbee. As air passes over the curved upper surface of the Frisbee it speeds up, creating a low pressure region on top of the Frisbee. Below the Frisbee, air passes more slowly, creating a high pressure region. The difference in pressure gives the Frisbee lift. The shape of the Frisbee generates lift, but it needs more than that for flight.

Try throwing a Frisbee without spinning it. Notice how it wobbles and tumbles. The shape of the Frisbee may be generating lift, but the Frisbee is unstable. It cannot stay upright and eventually stalls (falls). All flying things must have something that makes them stable during flight; airplanes and birds have tails, rockets have fins. For a Frisbee, it is the spinning motion generated from the Frisbee throw that stabilizes the Frisbee as it flies.