ScienceIQ.com

Spontaneous Combustion

Most of us know if we leave oily rags or papers in an enclosed area, we risk a fire. The process of burning is called oxidation. Oxidation is the same process that causes iron to rust or a banana to turn brown if left exposed to the air. It is the chemical reaction between oxygen and another material in which oxygen atoms replace the atoms of the ...

Continue reading...

SpontaneousCombustion
Geology

What's In A Name?

Hurricane Elena as seen from the space shuttle. Have you ever wondered how hurricanes get their names? For several hundred years many hurricanes in the West Indies were named after the particular ... Continue reading

HurricaneElena
Engineering

Red Dot Replacing Cross Hairs

A bullet fired from a gun becomes subject to the pull of gravity and begins to fall the instant it leaves the gun barrel. The farther away from the gun the bullet travels, the lower to the ground it ... Continue reading

RedDotReplacingCrossHairs
Geology

What is Haze?

Haze is caused when sunlight encounters tiny pollution particles in the air. Some light is absorbed by particles. Other light is scattered away before it reaches an observer. More pollutants mean more ... Continue reading

Haze
Chemistry

Ozone: Good Up High, Bad Nearby

Ozone is a gas that forms in the atmosphere when 3 atoms of oxygen are combined (03). It is not emitted directly into the air, but at ground level is created by a chemical reaction between oxides of ... Continue reading

Ozone

The Big Bang Model

TheBigBangModelThe Big Bang Model is a broadly accepted theory for the origin and evolution of our universe. It postulates that 12 to 14 billion years ago, the portion of the universe we can see today was only a few millimeters across. It has since expanded from this hot dense state into the vast and much cooler cosmos we currently inhabit. We can see remnants of this hot dense matter as the now very cold cosmic microwave background radiation which still pervades the universe and is visible to microwave detectors as a uniform glow across the entire sky. The Big Bang Model rests on two theoretical pillars. These two ideas form the entire theoretical basis for Big Bang cosmology and lead to very specific predictions for observable properties of the universe.

The first key idea dates to 1916 when Einstein developed his General Theory of Relativity which he proposed as a new theory of gravity. His theory generalizes Isaac Newton's original theory of gravity, c. 1680, in that it is supposed to be valid for bodies in motion as well as bodies at rest. Newton's gravity is only valid for bodies at rest or moving very slowly compared to the speed of light (usually not too restrictive an assumption!). A key concept of General Relativity is that gravity is no longer described by a gravitational 'field' but rather it is supposed to be a distortion of space and time itself. Physicist John Wheeler put it well when he said 'Matter tells space how to curve, and space tells matter how to move.' Originally, the theory was able to account for peculiarities in the orbit of Mercury and the bending of light by the Sun, both unexplained in Isaac Newton's theory of gravity. In recent years, the theory has passed a series of rigorous tests.

After the introduction of General Relativity a number of scientists, including Einstein, tried to apply the new gravitational dynamics to the universe as a whole. At the time this required an assumption about how the matter in the universe was distributed. The simplest assumption to make is that if you viewed the contents of the universe with sufficiently poor vision, it would appear roughly the same everywhere and in every direction. That is, the matter in the universe is homogeneous and isotropic when averaged over very large scales. This is called the Cosmological Principle. This assumption is being tested continuously as we actually observe the distribution of galaxies on ever larger scales. In addition the cosmic microwave background radiation, the remnant heat from the Big Bang, has a temperature which is highly uniform over the entire sky. This fact strongly supports the notion that the gas which emitted this radiation long ago was very uniformly distributed.