ScienceIQ.com

Wetter not Necessarily Better in Amazon Basin

June through September is the dry season for the Amazon Basin of South America. Yet the basin's dry season may be getting uncharacteristically wetter, according to NASA's Goddard Space Flight Center in Maryland. That's news that could affect all of us, no matter where we live. You might say as the Amazon's weather goes, so goes the world's climate. ...

Continue reading...

AmazonBasin
Chemistry

Why does popcorn pop?

Popcorn is the most amazing food! It all starts with a kernel only several millimeters in diameter which explodes into a 40-50 times bigger fluffy, tasty, white wonder. The kernel is made of three ... Continue reading

WhyDoesPopcornPop
Geology

Tornadoes

Tornadoes are perhaps one of the most terrifying manifestations of weather. Luckily for the rest of the world, they occur most frequently in the United States. A typical tornado season may see as many ... Continue reading

Tornadoes
Geology

The Good, the Bad and the Ozone

Ozone is a big buzz word these days. We mostly hear about the ozone layer, and the importance of protecting it. But if you want to understand what ozone's all about, you need to understand that it can ... Continue reading

TheGoodtheBadandtheOzone
Geology

The World's Biggest Popsicle

Stored in a commercial freezer in France, along with quite a lot of frozen meat and cheese, is about 15 kilometers' worth of ice cores, taken from glaciers in Greenland and Antarctica. Each giant ... Continue reading

TheWorldsBiggestPopsicle

How Lasers Work

HowLasersWorkLight is a fascinating thing. Or things, as the case may be. Electromagnetic energy that our eyes have developed to see, light has the same behavior and properties as all other electromagnetic radiation. But there is a dilemma that is most noticeable with light, arising from the fact that it is observed to behave at times as though it is composed of small, discrete particles, while at other times it behaves as though composed of continuous waves. This is known as the 'wave-particle duality' of light. In everyday applications this duality is unimportant, and for the most part we don't care whether we are bathed in waves or particles as long as the lights come on when we flick the switch or the sun shines when the storm clouds break apart.

But the wave-particle duality has great importance in more technical and scientific applications. In certain materials. electrons can be stimulated to switch energy levels within atoms and molecules. When those electrons go back into their original energy levels, they each give up a single 'particle' of energy called a 'photon', whose value is exactly equal to the difference in energy between the two electronic levels. When the material is made to lase in this way, the released photons are manipulated in such a way that they come out of the material as coherent waves of light. That is, the light waves all have the same wavelength, all have the same amplitude, and all the waves are in phase and traveling in parallel with each other.

Light from a non-coherent source radiates outward from that source in all directions. By contrast, a beam of laser light doesn't diverge but maintains a constant size. At least, that's the theory. In practice, laser beams do diverge in a manner that directly reflects the quality with which the laser device has been constructed. The better the laser device, the narrower, more coherent, and less divergent is the beam of laser light that it emits.