ScienceIQ.com

Laser Guide Stars

Did you ever wonder why we have to have the Hubble Space Telescope so high up in the Earth's orbit? Why not just make a bigger and better telescope on the surface? ...

Continue reading...

LaserGuideStars
Biology

Prokaryotic Organisms

It appears that life arose on earth about 4 billion years ago. The simplest of cells, and the first types of cells to evolve, were prokaryotic cells--organisms that lack a nuclear membrane, the ... Continue reading

ProkaryoticOrganisms
Astronomy

It's Gonna Hit Us... Or Is It?

Recently, some astronomers were concerned that a newly discovered asteroid might hit Earth in 2017. This was big news because even the impact of a modest-sized asteroid could have a devastating ... Continue reading

MeteorHit
Astronomy

The Oldest Light in the Universe

A NASA satellite has captured the sharpest-ever picture of the afterglow of the big bang. The image contains such stunning detail that it may be one of the most important scientific results of recent ... Continue reading

OldestLightUniverse
Physics

Can Wint-O-Green Lifesavers® Light up Your Life?

Next time you're bored, grab a pack of Wint-O-Green Lifesavers® and lock yourself in the bathroom. Shut the blinds and make sure the room is pitch black. Allow your eyes to adjust and open the pack ... Continue reading

WintOGreenLifesavers

What Causes The Blue Color That Sometimes Appears In Snow And Ice?

BlueColorSnowIceGenerally, snow and ice present us with a uniformly white face. This is because most all of the visible light striking the snow or ice surface is reflected back without any particular preference for a single color within the visible spectrum. The situation is different for that portion of the light which is not reflected but penetrates or is transmitted into the snow. As this light travels into the snow or ice, the ice grains scatter a large amount of light. If the light is to travel over any distance it must survive many such scattering events, that is it must keep scattering and not be absorbed.

The observer sees the light coming back from the near surface layers (mm to cm) after it has been scattered or bounced off other snow grains only a few times and it still appears white. However, the absorption is preferential. More red light is absorbed compared to blue. Not much more, but enough that over a considerable distance, say a meter or more, photons emerging from the snow layer tend to be made up of more blue light than red light. Typical examples are poking a hole in the snow and looking down into the hole to see blue light or the blue color associated with the depths of crevasses in glaciers. In each case the blue light is the product of a relatively long travel path through the snow or ice. So the spectral selection is related to absorption, and not reflection as is sometimes thought.

In simplest of terms, think of the ice or snow layer as a filter. If it is only a centimeter thick, all the light makes it through, but if it is a meter thick, mostly blue light makes it through.