ScienceIQ.com

Radon, A Rare Element

To the best of our knowledge, the entire universe is constructed from just over a hundred different types of building blocks called atoms. Each has its own characteristic properties, and while there are dangers associated with each and every one of them, it seems that the rarer the element, the more serious are its effects. Such is the case with ...

Continue reading...

RadonARareElement
Engineering

Man Versus Machine

Computers and automation are designed to help people. It sounds so simple. If you've ever tried to use a machine that looks easy but turns out to be complicated and confusing, however, you know that ... Continue reading

ManMachine
Geology

The San Andreas Fault

Scientists have learned that the Earth's crust is fractured into a series of 'plates' that have been moving very slowly over the Earth's surface for millions of years. Two of these moving plates meet ... Continue reading

TheSanAndreasFault
Astronomy

Mount Olympus

Olympus Mons, the largest volcano in the solar system, towers a breathtaking 25 km above the surrounding plains on Mars. Until recently scientists thought that Olympus Mons and other volcanoes on the ... Continue reading

MountOlympus
Medicine

Re-emerging Microbes

The reappearance of microbes that had been successfully conquered or controlled by medicines is distressing to the scientific and medical communities as well as to the public. A major cause of this ... Continue reading

ReemergingMicrobes

What Give Batteries Their Charge?

WhatGiveBatteriesTheirChargeThere is in chemistry only one function that is of fundamental importance: the ability of atoms to share electrons. In any such sharing program, there must be electron donors and electron acceptors. In a great many compounds, all the atoms involved simultaneously donate and accept electrons, and everybody is happy. But each type of atom known has its own unique atomic structure that imparts uniquely different abilities to donate or accept electrons. The extent to which an atom is indeed sharing its electrons is referred to as its 'oxidation state'. When an atom undergoes a change in which it accepts more electrons, its oxidation state is reduced, When the atom gives up more electrons it is said to have been oxidized. The movement of electrons from one location to another defines an electrical current, and the force with which the electrons move is the electrical potential, or 'voltage'.

In practice, bringing two materials having different oxidation and reduction (or 'redox') potentials into contact with each other results in a flow of electrons from one to the other. Anyone who has ever managed to bite down on a piece of aluminum foil has felt the effect of the electrical current produced when the aluminum came into contact with an amalgam filling! This principle is the basis of all electrical batteries. In a battery, the two different materials are isolated from each other in such a way that they can only come into contact through an external means such as a wire or the circuits within a battery-powered radio, flashlight, remote control, or whatever the batteries are being used to power. In small batteries such as AAA, AA, C, D, and 9V batteries, one of the materials is sealed as a thin layer between two sheets of insulating material. The resulting 'sandwich' is then rolled up around a thin layer of the second material to construct the inner portion of the battery.

The structure is made so that one material is accessible from one end of the battery, and the other material is accessible from the other end of the battery. The material that will give up electrons is thus made into the 'cathode' or 'negative' terminal of the battery. The other material forms the 'anode' or 'positive' terminal of the battery and will accept the electrons given up by the cathode. When the two terminals are connected to each other through an electrical circuit, the two materials can behave as though they were actually in contact with each other, and electrons begin to flow from the cathode to the anode. It is interesting to note that all A, C, and D size batteries produce electrons through a redox process having a potential difference of 1.5 volts. They differ only in the number of electrons they can transfer in a given time, which is the electrical current that they produce.