ScienceIQ.com

Mercury

The small and rocky planet Mercury is the closest planet to the Sun; it speeds around the Sun in a wildly elliptical (non-circular) orbit that takes it as close as 47 million km and as far as 70 million km from the Sun. Mercury completes a trip around the Sun every 88 days, speeding through space at nearly 50 km per second, faster than any other ...

Continue reading...

Mercury
Biology

Which Came First? The Words or the Melody?

There's good evidence that we're born into the world with an innate understanding of music, and a natural response to it. You don't need to be a child psychologist to know that babies don't have to be ... Continue reading

WordsMelody
Physics

Torque

A force may be thought of as a push or pull in a specific direction. When a force is applied to an object, the object accelerates in the direction of the force according to Newton's laws of motion. ... Continue reading

Torque
Physics

The Coriolis Effect

The Earth, rotating at about 1000 miles per hour (1,609 km/hr), influences the flow of air and water on its surface. We call this the Coriolis Effect, named after French scientist Gaspard Coriolis, ... Continue reading

Coriolis
Engineering

Leaning Wonder of Engineering

Most everyone is familiar with the famous Leaning Tower of Pisa. It's known not so much for its engineering, as for the fact that it hasn't fallen yet. From an engineering standpoint, it is a study in ... Continue reading

TowerofPisa

Neurons

NeuronsUntil recently, most neuroscientists thought we were born with all the neurons we were ever going to have. As children we might produce some new neurons to help build the pathways - called neural circuits - that act as information highways between different areas of the brain. But scientists believed that once a neural circuit was in place, adding any new neurons would disrupt the flow of information and disable the brain's communication system. In 1962, scientist Joseph Altman challenged this belief when he saw evidence of neurogenesis (the birth of neurons) in a region of the adult rat brain called the hippocampus. He later reported that newborn neurons migrated from their birthplace in the hippocampus to other parts of the brain. In 1979, another scientist, Michael Kaplan, confirmed Altman's findings in the rat brain, and in 1983 he found neural precursor cells in the forebrain of an adult monkey.

These discoveries about neurogenesis in the adult brain were surprising to other researchers who didn't think they could be true in humans. But in the early 1980s, a scientist trying to understand how birds learn to sing suggested that neuroscientists look again at neurogenesis in the adult brain and begin to see how it might make sense. In a series of experiments, Fernando Nottebohm and his research team showed that the numbers of neurons in the forebrains of male canaries dramatically increased during the mating season. This was the same time in which the birds had to learn new songs to attract females.

Why did these bird brains add neurons at such a critical time in learning? Nottebohm believed it was because fresh neurons helped store new song patterns within the neural circuits of the forebrain, the area of the brain that controls complex behaviors. These new neurons made learning possible. If birds made new neurons to help them remember and learn, Nottebohm thought the brains of mammals might too. For some neuroscientists, neurogenesis in the adult brain is still an unproven theory. But others think the evidence offers intriguing possibilities about the role of adult-generated neurons in learning and memory.