ScienceIQ.com

Turning Oil Into Gas

When you see all those cars at the gas station filling up with unleaded, you may not stop to think about how that gasoline got there. It wasn't pumped out of the ground in that form. The same goes for jet airplane fuel. It didn't start out that way--it took a long refining process to become fuel. You could never fly an airplane with gasoline, but ...

Continue reading...

TurningOilIntoGas
Biology

Butterflies In Your Brain

The idea behind chaos theory is that complex systems have an inherent element of unpredictability. The human brain certainly qualifies as a complex system. It is also a chaotic system. It does not ... Continue reading

ButterfliesInYourBrain
Physics

Newton's Three Laws of Motion

The motion of an aircraft through the air can be explained and described by physical principals discovered over 300 years ago by Sir Isaac Newton. Newton worked in many areas of mathematics and ... Continue reading

NewtonsThreeLawsofMotion
Engineering

Don't Blow A Gasket!

Don't blow a gasket! Who hasn't heard this old adage at some time? What does it actually mean, and for that matter, what is a gasket? Gaskets are simple structures used to fill in and seal the spaces ... Continue reading

DontBlowAGasket
Physics

The Coriolis Effect

The Earth, rotating at about 1000 miles per hour (1,609 km/hr), influences the flow of air and water on its surface. We call this the Coriolis Effect, named after French scientist Gaspard Coriolis, ... Continue reading

Coriolis

A Giant X-Ray Machine

AGiantXRayMachineThe first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equator, a surprising result since Jupiter's X-ray emission is mainly concentrated near the poles. Existing theories cannot easily explain the intensity or distribution of Saturn's X-rays. Chandra observed Saturn for about 20 hours in April of 2003. The spectrum, or distribution with energy of the X-rays, was found to be very similar to that of X-rays from the Sun. The observed 90 megawatts of X-ray power from Saturn's equatorial region is roughly consistent with previous observations of the X-radiation from Jupiter's equatorial region. This suggests that both giant, gaseous planets reflect solar X-rays at unexpectedly high rates. Further observations of Jupiter will be needed to test this possibility.

The weak X-radiation from Saturn's south-polar region presents another puzzle (the north pole was blocked by Saturn's rings during this observation). Saturn's magnetic field, like that of Jupiter, is strongest near the poles. X-radiation from Jupiter is brightest at the poles because of auroral activity due to the enhanced interaction of high-energy particles from the Sun with its magnetic field. Since spectacular ultraviolet polar auroras have been observed to occur on Saturn, Ness and colleagues expected that Saturn's south pole might be bright in X-rays. It is not clear whether the auroral mechanism does not produce X-rays on Saturn, or for some reason concentrates the X-rays at the north pole.

The same team detected X-radiation from Saturn using the European Space Agency's XMM-Newton Observatory. Although these observations could not locate the X-rays on Saturn's disk, the intensity of the observed X-rays was very similar to what was found with Chandra and consistent with a marginal detection of X-rays from Saturn reported in 2000 using the German Roentgensatellite (ROSAT).