ScienceIQ.com

The Chandra Mission

NASA's Chandra X-ray Observatory, which was launched and deployed by Space Shuttle Columbia on July 23, 1999, is the most sophisticated X-ray observatory built to date. Chandra is designed to observe X-rays from high-energy regions of the universe, such as the remnants of exploded stars.The Observatory has three major parts: (1) the X-ray ...

Continue reading...

Chandra
Astronomy

Pluto: Beyond Neptune Or Not?

Did I catch you? Pluto (newly classified as a dwarf-planet) comes after planet Neptune. Right? Depends. Pluto takes 248 years to orbit the Sun. Most of that time Pluto's orbit puts it outside the ... Continue reading

Pluto
Biology

Billions and Billions

Nobody really knows how many brain cells anybody has, but typical estimates are around 200 billion. You've heard the late Carl Sagan talk about 'billions and billions of stars' in the universe. Think ... Continue reading

BillionsBillions
Engineering

The Right Stuff for Super Spaceships

Revolutions in technology - like the Industrial Revolution that replaced horses with cars - can make what seems impossible today commonplace tomorrow. ... Continue reading

SuperSpaceships
Chemistry

Why does popcorn pop?

Popcorn is the most amazing food! It all starts with a kernel only several millimeters in diameter which explodes into a 40-50 times bigger fluffy, tasty, white wonder. The kernel is made of three ... Continue reading

WhyDoesPopcornPop

NASA Explains Dust Bowl Drought

NASAExplainsDustBowlDroughtNASA scientists have an explanation for one of the worst climatic events in the history of the United States, the 'Dust Bowl' drought, which devastated the Great Plains and all but dried up an already depressed American economy in the 1930's. Siegfried Schubert of NASA's Goddard Space Flight Center, Greenbelt, Md., and colleagues used a computer model developed with modern-era satellite data to look at the climate over the past 100 years. The study found cooler than normal tropical Pacific Ocean surface temperatures combined with warmer tropical Atlantic Ocean temperatures to create conditions in the atmosphere that turned America's breadbasket into a dust bowl from 1931 to 1939. These changes in sea surface temperatures created shifts in the large-scale weather patterns and low level winds that reduced the normal supply of moisture from the Gulf of Mexico and inhibited rainfall throughout the Great Plains.

By discovering the causes behind U.S. droughts, especially severe episodes like the Plains' dry spell, scientists may recognize and possibly foresee future patterns that could create similar conditions. For example, La Ninas are marked by cooler than normal tropical Pacific Ocean surface water temperatures, which impact weather globally, and also create dry conditions over the Great Plains. The researchers used NASA's Seasonal-to-Interannual Prediction Project (NSIPP) atmospheric general circulation model and agency computational facilities to conduct the research. The NSIPP model was developed using NASA satellite observations, including; Clouds and the Earth's Radiant Energy System radiation measurements; and the Global Precipitation Climatology Project precipitation data.

The model showed cooler than normal tropical Pacific Ocean temperatures and warmer than normal tropical Atlantic Ocean temperatures contributed to a weakened low-level jet stream and changed its course. The jet stream, a ribbon of fast moving air near the Earth's surface, normally flows westward over the Gulf of Mexico and then turns northward pulling up moisture and dumping rain onto the Great Plains. As the low level jet stream weakened, it traveled farther south than normal. The Great Plains dried up and dust storms formed. The research shed light on how tropical sea surface temperatures can have a remote response and control over weather and climate. It also confirmed droughts can become localized based on soil moisture levels, especially during summer. When rain is scarce and soil dries, there is less evaporation, which leads to even less precipitation, creating a feedback process that reinforces lack of rainfall.