ScienceIQ.com

The Big Bang Model

The Big Bang Model is a broadly accepted theory for the origin and evolution of our universe. It postulates that 12 to 14 billion years ago, the portion of the universe we can see today was only a few millimeters across. It has since expanded from this hot dense state into the vast and much cooler cosmos we currently inhabit. We can see remnants of ...

Continue reading...

TheBigBangModel
Geology

Surprise! Lightning Has Big Effect On Atmospheric Chemistry

Scientists were surprised to learn summer lightning over the U.S. significantly increases regional ozone and other gases that affect air chemistry 3 to 8 miles above Earth's surface.The amounts of ... Continue reading

AtmosphericChemistry
Biology

What Are Stem Cells?

When an egg is fertilized by a sperm cell, it quickly becomes a single cell from which all cells of the body-to-be will be created. This 'mother of all cells' is what biologists call a totipotent stem ... Continue reading

StemCells
Biology

Why is Red-Green Colorblindness a 'Guy Thing?'

Colorblind girls and women are rare, while men who can't match their socks are relatively common. The reason is a genetic phenomenon called sex-linked inheritance. Humans have 23 pairs of chromosomes. ... Continue reading

ColorBlindness
Biology

A Humongous Fungus Among Us

Did you ever wonder what the world's largest organism is? If we had to guess, maybe we'd pick an elephant, a giant sequoia or a whale. Well, those choices would be wrong; this organism is actually a ... Continue reading

AHumongousFungus

The Sun, The Mighty Engine Of Our Solar System

SunSolarSystemOur Sun has inspired mythology in almost all cultures, including ancient Egyptians, Aztecs, Native Americans, and Chinese. We now know that the Sun is a huge, bright sphere of mostly ionized gas, about 4.5 billion years old, and is the closest star to Earth at a distance of about 150 million km. The next closest star - Proxima Centauri - is nearly 268,000 times farther away. There are millions of similar stars in the Milky Way Galaxy (and billions of galaxies in the universe). Our Sun supports life on Earth. It powers photosynthesis in green plants and is ultimately the source of all food and fossil fuel. The connection and interaction between the Sun and the Earth drive the seasons, currents in the ocean, weather, and climate.

The Sun is some 333,400 times more massive than Earth and contains 99.86 percent of the mass of the entire solar system. It is held together by gravitational attraction, producing immense pressure and temperature at its core (more than a billion times that of the atmosphere on Earth, with a density about 160 times that of water). A handle-shaped cloud of plasma erupts from the Sun. At the core, the temperature is 16 million degrees kelvin (K), which is sufficient to sustain thermonuclear fusion reactions. The released energy prevents the collapse of the Sun and keeps it in gaseous form. The total energy radiated is 383 billion trillion kilowatts, which is equivalent to the energy generated by 100 billion tons of TNT exploding each second.

In addition to the energy-producing solar core, the interior has two distinct regions: a radiative zone and a convective zone. From the edge of the core outward, first through the radiative zone and then through the convective zone, the temperature decreases from 8 million to 7,000 K. It takes a few hundred thousand years for photons to escape from the dense core and reach the surface.