ScienceIQ.com

A Hurricane In Brazil?

Hurricanes are terrifying. They rip trees right out of the ground, hurl cars into the air, and flatten houses. Their winds can blow faster than 100 mph. Some hurricanes have been known to pull a wall of water from the ocean 20 feet high ... then fling it inland, inundating miles of coast. No other storms on Earth are so destructive. Or so ...

Continue reading...

AHurricaneInBrazil
Astronomy

Voyager Phone Home

After historic visits to Jupiter and Saturn, Voyager 1 is now on course to be the first human-made object to leave our solar system. In space for more than 25 years, it has already traveled farther ... Continue reading

Voyager
Biology

Welcome to1984

You've probably heard reports about a recently-developed technological device that may help quadriplegics regain control of their limbs. The device is designed to read the quadriplegic's brain waves, ... Continue reading

Welcometo1984
Biology

Throw Out Your Thermometer

If you're out camping, and you've left your favorite thermometer at home, how can you figure out the temperature? Not the most earth-shaking problem, we admit, but there is an all natural way to find ... Continue reading

Thermometer
Astronomy

A Ring Around a Dying Star

In November 2002, sky watchers were viewing the glow of meteors from the Leonid meteor shower burning up in Earth's atmosphere. They had been anticipating this celestial light show for months, ... Continue reading

ARingAroundaDyingStar

A Giant X-Ray Machine

AGiantXRayMachineThe first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equator, a surprising result since Jupiter's X-ray emission is mainly concentrated near the poles. Existing theories cannot easily explain the intensity or distribution of Saturn's X-rays. Chandra observed Saturn for about 20 hours in April of 2003. The spectrum, or distribution with energy of the X-rays, was found to be very similar to that of X-rays from the Sun. The observed 90 megawatts of X-ray power from Saturn's equatorial region is roughly consistent with previous observations of the X-radiation from Jupiter's equatorial region. This suggests that both giant, gaseous planets reflect solar X-rays at unexpectedly high rates. Further observations of Jupiter will be needed to test this possibility.

The weak X-radiation from Saturn's south-polar region presents another puzzle (the north pole was blocked by Saturn's rings during this observation). Saturn's magnetic field, like that of Jupiter, is strongest near the poles. X-radiation from Jupiter is brightest at the poles because of auroral activity due to the enhanced interaction of high-energy particles from the Sun with its magnetic field. Since spectacular ultraviolet polar auroras have been observed to occur on Saturn, Ness and colleagues expected that Saturn's south pole might be bright in X-rays. It is not clear whether the auroral mechanism does not produce X-rays on Saturn, or for some reason concentrates the X-rays at the north pole.

The same team detected X-radiation from Saturn using the European Space Agency's XMM-Newton Observatory. Although these observations could not locate the X-rays on Saturn's disk, the intensity of the observed X-rays was very similar to what was found with Chandra and consistent with a marginal detection of X-rays from Saturn reported in 2000 using the German Roentgensatellite (ROSAT).