ScienceIQ.com

Why Tree Twig Twine Twists Tongues

Even though we call it a 'tongue twister,' it isn't really your tongue that has a hard time saying 'sixth sick sheik's sixth sheep's sick.' It's not all that rare for people to make mispronunciations when their brain sends the wrong instructions to the tongue because it's anticipating speech sounds that are to come later in the speech stream. ...

Continue reading...

TreeTwigTwineTwists
Chemistry

Turning Oil Into Gas

When you see all those cars at the gas station filling up with unleaded, you may not stop to think about how that gasoline got there. It wasn't pumped out of the ground in that form. The same goes for ... Continue reading

TurningOilIntoGas
Physics

Somewhere Over Which Rainbow?

How many rainbows are there really when we only see one during a rainstorm? The answer isn't as simple as you might think! Rainbows are formed when light enters a water droplet, reflects once inside ... Continue reading

DoubleRainbow
Geology

Tornadoes

Tornadoes are perhaps one of the most terrifying manifestations of weather. Luckily for the rest of the world, they occur most frequently in the United States. A typical tornado season may see as many ... Continue reading

Tornadoes
Engineering

Snakebots Coming Your Way

Early robots were stiff, clumsy machines that plodded in straight lines. More modern robots can be radio controlled and move with much more grace and precision. Snakebots, though, can weave through ... Continue reading

Snakebots

Neurons

NeuronsUntil recently, most neuroscientists thought we were born with all the neurons we were ever going to have. As children we might produce some new neurons to help build the pathways - called neural circuits - that act as information highways between different areas of the brain. But scientists believed that once a neural circuit was in place, adding any new neurons would disrupt the flow of information and disable the brain's communication system. In 1962, scientist Joseph Altman challenged this belief when he saw evidence of neurogenesis (the birth of neurons) in a region of the adult rat brain called the hippocampus. He later reported that newborn neurons migrated from their birthplace in the hippocampus to other parts of the brain. In 1979, another scientist, Michael Kaplan, confirmed Altman's findings in the rat brain, and in 1983 he found neural precursor cells in the forebrain of an adult monkey.

These discoveries about neurogenesis in the adult brain were surprising to other researchers who didn't think they could be true in humans. But in the early 1980s, a scientist trying to understand how birds learn to sing suggested that neuroscientists look again at neurogenesis in the adult brain and begin to see how it might make sense. In a series of experiments, Fernando Nottebohm and his research team showed that the numbers of neurons in the forebrains of male canaries dramatically increased during the mating season. This was the same time in which the birds had to learn new songs to attract females.

Why did these bird brains add neurons at such a critical time in learning? Nottebohm believed it was because fresh neurons helped store new song patterns within the neural circuits of the forebrain, the area of the brain that controls complex behaviors. These new neurons made learning possible. If birds made new neurons to help them remember and learn, Nottebohm thought the brains of mammals might too. For some neuroscientists, neurogenesis in the adult brain is still an unproven theory. But others think the evidence offers intriguing possibilities about the role of adult-generated neurons in learning and memory.