ScienceIQ.com

How Do Bacteria Reproduce?

Bacteria are microorganisms that have been around for billions of years. How have they survived all that time? Microorganisms are experts at reproducing, not only can they produce new bacteria fast, but easily too. They have various methods of reproduction, including binary fission and budding. Both are simple, fast methods to produce more ...

Continue reading...

HowDoBacteriaReproduce
Mathematics

How To Calculate The Area Of A Cylinder

Understanding how to find the area of a cylinder is easy if one first visualizes the cylinder and breaks its surface down into component pieces. To do this, first take a good look at the most common ... Continue reading

AreaOfACylinder
Astronomy

It's Dusty Out There

There is no lower limit to the size of the solid particles that move around the Sun. Small asteroids grade downward into large meteoroids and then into smaller pebbles and so on down to the tiniest ... Continue reading

ItsDustyOutThere
Astronomy

A Map of the Sky

Niagara Falls, the Grand Canyon, Old Faithful... we know they're spectacular sites, but how did we find out about them? Early explorers took the time to map out the United States and as a result, you ... Continue reading

AMapoftheSky
Biology

The Dogma of Life

Dogmas are authoritative tenets common in religion and philosophy. But in molecular biology? Molecular biology has a central dogma, proposed by Francis Crick in 1953, that says that genetic ... Continue reading

MolecularBiology

For Want Of An O-Ring

ForWantOfAnORingWho can forget the Challenger disaster of 1986, the culprit, a failed O-ring. But what exactly is an O-ring and how did it cause the destruction of this space shuttle? When surfaces are flat, gaskets are used to form a tight seal. How about when the machined surfaces are not flat but round? The sealing function in that case is served by an O-ring. O-rings are commonly used in hydraulic and pneumatic applications, often at very high pressures. But while an O-ring nominally serves the same purpose as a gasket, it functions in an entirely different manner. A gasket must be compressed strongly to make it fill in any inconsistent regions on flat surfaces. Compressing an O-ring in the same manner as a gasket completely defeats the functioning of the O-ring. The O-ring becomes flattened and is destroyed. Unfortunately, there are many technicians out there who never seem to learn that lesson.

The proper use of an O-ring as a pressure seal is very much a balancing act. The O-ring is designed to meet certain strength specifications and material applications, and when properly selected and applied will provide a sure seal against high fluid pressures. The trick is to apply just enough pressure to the joint to cause the O-ring material to seat against the surfaces and to stiffen against the pressure exerted by the fluid it must contain. As pressure is applied through tightening the joint, the O-ring material compresses somewhat to fill the space available to it in a specially machined groove. It becomes stiffer and unable to shift under the influence of fluid pressures, thus securing the seal. Over-tightening results in over-compression and deformation that destroys the O-ring and the seal and allows fluids to leak, possibly with dire consequences.

The restrictions on O-ring materials are more stringent. Because of the way in which O-rings function, the materials from which they are made must not be rigid materials. O-rings must be chemically inert to fluids such as hydraulic oils, organic solvents, and a variety of acidic and caustic water-based solutions. This leaves only special rubber and plastic formulations, usually silicon-based. Unlike gaskets, O-rings must be made to precision dimensions and with close attention paid to uniformity of shape. An O-ring that does not meet these requirements will certainly fail at the first opportunity. In the case of the Challenger, the cause of the failure was the temperature. On the morning of the Challenger launch, the temperature was below freezing, causing the O-rings to become hard and lose their flexibility. The result was a catastrophic leak of fuel which, when ignited, engulfed the entire shuttle in superheated flames. A devastating result due to the failure of an O-ring.