ScienceIQ.com

Sibling Rivalry: A Mars/Earth Comparison

Scientific understanding is often a matter of making the right comparisons. In terms of studying the Earth, one of the best comparative laboratories exists one planet over--on Mars. In many ways, the study of Mars provides Earth bound scientists with a control set as they look at the processes of climate change, geophysics, and the potential for ...

Continue reading...

MarsEarthComparison
Geology

Pyroclastic Flows: Deadly Rivers of Rock

A volcano, during a violent eruption, blasts massive amounts of heated rock fragments, hot gas and ash out vents and collapsing domes. This sudden outpouring of superheated material reaches ... Continue reading

VolcanoFlows
Biology

What's So Funny?

There's an oft-repeated scientific definition of laughter as one or more forcibly voiced, acoustically symmetric, vowel-like notes (75 ms duration) separated by regular intervals (210-218 ms), and a ... Continue reading

Laughter
Medicine

Malaria and Sickle Cell Anemia

Sickle cell anemia is a genetic disorder in which the red blood cells collapse into a 'sickle' shape and cannot carry oxygen very well. They also tend to get stuck in narrow blood vessels, causing ... Continue reading

MalariaSickleCell
Biology

Nature's Exceptions to Our Rules

We all learned in grade school that animals are classified into different categories: Mammals have fur, are warm blooded, give birth to their young and feed their babies milk. Birds have feathers, ... Continue reading

NaturesExceptions

The Physics of Sandcastles

SandcastlesGive a plastic bucket and a shovel to a child, then turn her loose on a beach full of sand. She'll happily toil the day away building the sandcastle to end all sandcastles. It's pure fun. It's also serious physics. Sandcastles are built from grains - billions of tiny sharp-edged particles that rub and tumble together. The strength of a sandcastle depends on how the grains interact. What happens when they're wet? How do they respond to a jolt? It's not only beachgoers who are interested; farmers, physicists and engineers want to know, too.

Scientists mostly understand why sand on a beach behaves as it does. Damp sand sticks together because water forms little grain-to-grain bridges. Surface tension - the same force that lets some insects walk on the surface of a pond - acts like rubberbands between the grains. Adding water to damp sand fills spaces between the grains. The bridges vanish and the sand begins to flow more easily.

It's something to ponder the next time you're building a sandcastle: inside the moat lies some far-reaching physics.