ScienceIQ.com

What Is Arsenic?

Arsenic is a naturally occurring element widely distributed in the earth's crust. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. Inorganic arsenic compounds are mainly used to preserve ...

Continue reading...

WhatIsArsenic
Astronomy

Mount Olympus

Olympus Mons, the largest volcano in the solar system, towers a breathtaking 25 km above the surrounding plains on Mars. Until recently scientists thought that Olympus Mons and other volcanoes on the ... Continue reading

MountOlympus
Chemistry

Carbon Dating

As isotopes break down, or decay they give off radiation. Materials that decompose in this way are said to have a 'half-life'. As the quantity of material present decreases, so does the actual rate at ... Continue reading

CarbonDating
Biology

Brain Waves

Your brainwaves normally vary from a low vibrational state of about one Hz ('Hertz,' or vibrations per second) to a high of about 30 Hz. The highest-frequency vibrations, ranging from about 13 to 30 ... Continue reading

BrainWaves
Geology

How Much Water in an Inch of Snow?

If the snowfall amounts were translated into equivalent volumes of water - then how much water would that be? Using a rule of thumb that each 10 inches of snow, if melted, would produce one inch of ... Continue reading

HowMuchWaterinanInchofSnow

Radioactive Radon

RadioactiveRadonRadon is a gas produced by the radioactive decay of the element radium. Radioactive decay is a natural, spontaneous process in which an atom of one element decays or breaks down to form another element by losing atomic particles (protons, neutrons, or electrons). When solid radium decays to form radon gas, it loses two protons and two neutrons. These two protons and two neutrons are called an alpha particle, which is a type of radiation. The elements that produce radiation are called radioactive. Radon itself is radioactive because it also decays, losing an alpha particle and forming the element polonium.

The decay of each radioactive element occurs at a very specific rate. How fast an element decays is measured in terms of the element 'half-life', or the amount of time for one half of a given amount of the element to decay. Uranium has a half-life of 4.4 billion years, so a 4.4-billion-year-old rock has only half of the uranium with which it started. The half-life of radon is only 3.8 days. If a jar was filled with radon, in 3.8 days only half of the radon would be left. But the newly made daughter products of radon would also be in the jar, including polonium, bismuth, and lead. Polunium is also radioactive - it is this element, which is produced by radon in the air and in people's lungs, that can hurt lung tissue and cause lung cancer.