ScienceIQ.com

What Is a Spinal Cord Injury?

Although the hard bones of the spinal column protect the soft tissues of the spinal cord, vertebrae can still be broken or dislocated in a variety of ways and cause traumatic injury to the spinal cord. Injuries can occur at any level of the spinal cord. The segment of the cord that is injured, and the severity of the injury, will determine which ...

Continue reading...

WhatIsaSpinalCordInjury
Engineering

Taming Twin Tornadoes

Every time a jet airplane flies through the sky, it creates two invisible tornados. They're not the kind of tornados that strike in severe weather. These tornados are called vortices and can cause ... Continue reading

TwinTornadoes
Geology

Water In The Ground

Some water underlies the Earth's surface almost everywhere, beneath hills, mountains, plains, and deserts. It is not always accessible, or fresh enough for use without treatment, and it's sometimes ... Continue reading

WaterInTheGround
Biology

Phrenology

Does a bumpy head mean you're a brainy guy? In the 19th century, many people were absolutely convinced that bumps were the keys to understanding the human brain after Austrian medical student, Franz ... Continue reading

Phrenology
Engineering

The Night Orville Wright Had Too Many Cups Of Coffee

Whenever Wilbur and Orville Wright's colleague, George Spratt, visited their Kitty Hawk glider test camp, lively discussions and arguments on flight persisted until late in the evening. On this ... Continue reading

OrvilleWright

Kinetic Theory of Gases

KineticTheoryofGasesAir is a gas, and gases can be studied by considering the small scale action of individual molecules or by considering the large scale action of the gas as a whole. We can directly measure, or sense, the action of the gas. But to study the action of the molecules, we must use a theoretical model. The model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. The molecules are in constant, random motion and frequently collide with each other and with the walls of any container.

The individual molecules possess the standard physical properties of mass, momentum, and energy. The density of a gas is simply the sum of the mass of the molecules divided by the volume which the gas occupies. The pressure of a gas is a measure of the linear momentum of the molecules. As the gas molecules collide with the walls of a container, the molecules impart momentum to the walls, producing a force that can be measured. The force divided by the area is defined to be the pressure. The temperature of a gas is a measure of the mean kinetic energy of the gas. The molecules are in constant random motion, and there is an energy (mass x square of the velocity) associated with that motion. The higher the temperature, the greater the motion.

In a solid, the location of the molecules relative to each other remains almost constant. But in a gas, the molecules can move around and interact with each other and with their surroundings in different ways. As mentioned above, there is always a random component of molecular motion. The entire fluid can be made to move as well in an ordered motion (flow). The ordered motion is superimposed, or added to, the normal random motion of the molecules. At the molecular level, there is no distinction between the random component and the ordered component. In a pitot tube, we measure pressure produced by the random component as the static pressure, and the pressure produced by the random plus the ordered component as the total pressure.