ScienceIQ.com

The Truth About Atomic And Hydrogen Bombs

In the 1930's Enrico Fermi and other scientists studying the properties of radioactive materials observed an interesting phenomenon. They found that the readings taken with a Geiger counter were lower when taken through water than when taken through air. It wasn't immediately obvious what this meant, but soon they realized that the medium of water ...

Continue reading...

AtomicAndHydrogenBombs
Chemistry

Hydrogen Reaction Experiment Reaps a Surprise

Scientists got a surprise recently when a team of physical chemists at Stanford University studied a common hydrogen reaction. Scientists got a surprise recently when a team of physical chemists at ... Continue reading

HydrogenReactionExperiment
Biology

What Gives Hair Its Color?

Put a single hair under a microscope, and you'll see granules of black, brown, yellow, or red pigment. What you are seeing are tiny particles of melanin, the same pigment that gives skin its color. ... Continue reading

WhatGivesHairItsColor
Mathematics

Unit Of Luminous Intensity (candela)

Originally, each country had its own, and rather poorly reproducible, unit of luminous intensity; it was necessary to wait until 1909 to see a beginning of unification on the international level, when ... Continue reading

Candela
Astronomy

Right Ascension & Declination

Right Ascension (abbreviated R.A.) and Declination (abbreviated Dec) are a system of coordinates used by astronomers to keep track of where stars and galaxies are in the sky. They are similar to the ... Continue reading

RightAscensionDeclination

X-Ray Images & False Color

XRayColorThe colors we see in the world around us are the result of the way that the human eye and brain perceive different wavelengths of light in the visible part of the electromagnetic spectrum. X-rays, and other wavelengths such as radio, infrared, ultraviolet and gamma-rays, cannot be seen with the human eye, and thus do not have any 'color.' To see the invisible wavelengths, detectors sensitive to those other wavelengths are needed.

Images taken by telescopes that observe the 'invisible' wavelengths are sometimes called 'false color images.' That is because the colors used to make them are not 'real' but are chosen to bring out important details. The color choice is usually a matter of personal taste, and is used as a type of code in which the colors can be associated with the intensity or brightness of the radiation from different regions of the image, or with the energy of the emission.