ScienceIQ.com

Retreating Glaciers Spur Alaskan Earthquakes

Could an extra warm summer cause an earthquake in your backyard? Probably not... unless you live in Alaska. You probably know that friction in the earth's crust causes earthquakes, but did you know that a little extra sunshine might increase your chances of experiencing an earthquake if you live where glaciers are present? That's because as ...

Continue reading...

AlaskanEarthquakes
Biology

Throw Out Your Thermometer

If you're out camping, and you've left your favorite thermometer at home, how can you figure out the temperature? Not the most earth-shaking problem, we admit, but there is an all natural way to find ... Continue reading

Thermometer
Geology

Hurricanes, The Basics

There is nothing like them in the atmosphere. Born in warm tropical waters, these spiraling masses require a complex combination of atmospheric processes to grow, mature, and then die. They are not ... Continue reading

HurricanesTheBasics
Biology

Why is Red-Green Colorblindness a 'Guy Thing?'

Colorblind girls and women are rare, while men who can't match their socks are relatively common. The reason is a genetic phenomenon called sex-linked inheritance. Humans have 23 pairs of chromosomes. ... Continue reading

ColorBlindness
Medicine

Encephalitis and Meningitis

Encephalitis and meningitis are inflammatory diseases of the membranes that surround the brain and spinal cord and are caused by bacterial or viral infections. Viral meningitis is sometimes called ... Continue reading

EncephalitisandMeningitis

What Makes a Frisbee Fly?

FrisbeeIf you have ever been to the park or the beach, you've probably seen one of these plastic discs flying through the air. We're not talking about a UFO, we're talking about the Frisbee, more commonly known as the flying disc. What makes a Frisbee fly? Just like a bird's wing or the wing of an airplane, shape plays a large part in influencing the flying ability of the Frisbee.

If we take a look at the Frisbee from the side, we can see that the rounded edges of the Frisbee look similar to the front edge of an aircraft wing. We know that the curved upper surface of the wing is what generates (causes) lift. The same principle applies to the Frisbee. As air passes over the curved upper surface of the Frisbee it speeds up, creating a low pressure region on top of the Frisbee. Below the Frisbee, air passes more slowly, creating a high pressure region. The difference in pressure gives the Frisbee lift. The shape of the Frisbee generates lift, but it needs more than that for flight.

Try throwing a Frisbee without spinning it. Notice how it wobbles and tumbles. The shape of the Frisbee may be generating lift, but the Frisbee is unstable. It cannot stay upright and eventually stalls (falls). All flying things must have something that makes them stable during flight; airplanes and birds have tails, rockets have fins. For a Frisbee, it is the spinning motion generated from the Frisbee throw that stabilizes the Frisbee as it flies.