ScienceIQ.com

X-Ray Images & False Color

The colors we see in the world around us are the result of the way that the human eye and brain perceive different wavelengths of light in the visible part of the electromagnetic spectrum. X-rays, and other wavelengths such as radio, infrared, ultraviolet and gamma-rays, cannot be seen with the human eye, and thus do not have any 'color.' To see ...

Continue reading...

XRayColor
Chemistry

Table Salt - It's All In The Ions

All elements are defined by their individual atoms, which are in turn identified by the number of protons in the nucleus of each atom. Since protons are carriers of positive electrical charge, there ... Continue reading

TableSaltItsAllInTheIons
Astronomy

The Oldest Light in the Universe

A NASA satellite has captured the sharpest-ever picture of the afterglow of the big bang. The image contains such stunning detail that it may be one of the most important scientific results of recent ... Continue reading

OldestLightUniverse
Biology

Spiders and Their Venom

Spiders, which have been around for about 300 million years, are built differently from insects. They have eight legs, not six, and their bodies are divided into two sections, not three. Entomologists ... Continue reading

SpidersVenom
Chemistry

Hydrogen Reaction Experiment Reaps a Surprise

Scientists got a surprise recently when a team of physical chemists at Stanford University studied a common hydrogen reaction. Scientists got a surprise recently when a team of physical chemists at ... Continue reading

HydrogenReactionExperiment

The Melting Point

TheMeltingPointPhysical properties of a material fall into two categories: intrinsic properties determined by the structure of the particular molecule, and bulk properties characteristic of quantities of molecules together as bulk solids, liquids, or gases. The melting point of a pure substance is a bulk property and represents the point of transition of physical state from solid to liquid. Molecules of a substance must possess a specific amount of thermal energy in order for the solid-to-liquid phase transition to occur. The energy of a molecule is expressed in the vibrations of the interatomic bonds. The more energy a molecule possesses, the more energetic are the vibrations of the bonds within the molecule. In the solid state, the mobility of the molecules is restricted due to intermolecular attractions that keep the molecules within an ordered array (or crystal structure).

As the thermal energy contained by a molecule increases, the vibrations of the bonds (and hence of the molecules themselves) become more energetic. Eventually a point is reached at which the intermolecular attractive forces can no longer contain the molecular motion within an ordered array. At this point the ordered array breaks down and the molecules become much more mobile relative to each other. The material melts. Since the melting point of a material is demonstrated by the transition from the solid phase to the liquid phase, it stands to reason that every material that can exist in a solid phase and in a liquid phase must have a melting point. The melting point occurs at a different temperature for most materials. Water melts at 0, sodium chloride melts at 801, and hydrogen melts at -259.14.

The term 'melting point' suggests and is usually used to indicate the change of state from solid to liquid due to an increase in temperature. When the temperature is decreased, the phase transition occurs from the liquid state to the solid state, molecular vibrations become less energetic until the intermolecular attractive forces are able to contain them within an ordered array (or crystal). This transition is called the 'freezing point' of the material. The melting point and freezing point of a pure compound occur at the same temperature. The use of either term is acceptable but generally implies an appropriate methodology such as the use of laboratory equipment specific for the observation of the melting behavior of solids or the freezing behavior of liquids. Generally, 'melting point' is used for materials that are solids at room temperature, and 'freezing point' is used for materials that are liquids at room temperature.