ScienceIQ.com

A Satellite Of Our Own

The regular daily and monthly rhythms of Earth's only natural satellite, the Moon, have guided timekeepers for thousands of years. Its influence on Earth's cycles, notably tides, has also been charted by many cultures in many ages. More than 70 spacecraft have been sent to the Moon; 12 astronauts have walked upon its surface and brought back 382 kg ...

Continue reading...

ASatelliteOfOurOwn
Geology

Is Earth Getting Fatter Around the Belt?

Besides being used for transmission of this email message to you, communication satellites are used for some neat science. By shooting a laser beam onto them and measuring how long it takes for light ... Continue reading

EarthBelt
Astronomy

X-ray Telescopes

X-rays are a highly energetic form of light, not visible to human eyes. Light can take on many forms -- including radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation. ... Continue reading

XrayTelescopes
Engineering

Alloys

Water is a clear colorless liquid. So is methanol. If one were to take a quantity of methanol and pour it into some water, the result is also a clear colorless liquid. But this one is something new; a ... Continue reading

Alloys
Biology

Lionfish Invasion

Lionfish (Pterois volitans/miles complex) are beautiful, yet venomous, coral reef fish from Indian and western Pacific oceans that have invaded East Coast waters. Ironically, this species of lionfish ... Continue reading

LionfishInvasion

The Truth About Atomic And Hydrogen Bombs

AtomicAndHydrogenBombsIn the 1930's Enrico Fermi and other scientists studying the properties of radioactive materials observed an interesting phenomenon. They found that the readings taken with a Geiger counter were lower when taken through water than when taken through air. It wasn't immediately obvious what this meant, but soon they realized that the medium of water moderated the radioactive decay process by slowing down the subatomic particles emitted by the radioactive material. This observation eventually allowed the construction of the first 'atomic pile', in which a chain reaction of decaying radioactive nuclei could be maintained in a controlled manner. In a nuclear chain reaction, a particle emitted from one atomic nucleus strikes other nuclei, causing them to split apart and emit particles that in their turn strike other nuclei, and so on in a continuing process.

Without the intervention of a moderating medium, the process can go on in an uncontrolled manner. Each instance of a nucleus splitting apart and emitting a particle releases a certain amount of energy. When the amount of material present is more than a certain threshold quantity, or 'critical mass', so many particles and so much energy are released that the chain reaction runs wild. This is the process of 'nuclear fission' that defines an atomic bomb. The same process, but using a good moderating medium, allows the controlled release and capture of the same energy, which is the basis of the nuclear power generating station. The incident at Chernobyl some years ago stands as a grim reminder of the close kinship between the destructive force of the atomic bomb and the constructive generation of electricity in the nuclear reactor.

In 1953, people watched the testing of the first hydrogen bomb with some fear. For the first time in history, a force was to be purposely unleashed over which man had no control whatsoever and that served no purpose other than destruction. There was a fear that the detonation of that first bomb would also initiate the destruction of the world. This fear was based on the exceedingly small but finite probability that the explosion of this bomb would initiate an unstoppable chain reaction in the most common element in the world: hydrogen. Their fears were perhaps not totally unfounded, as a rumor persists that the energy liberated by that bomb exceeded the very best theoretical calculations by as much as twenty percent, begging the question 'where did it come from?'. And yet, this amazingly destructive force also presents a source of hope for mankind. Research continues to look for a way to harness the incredible power produced by the nuclear fusion process. Success would mean abundant cheap energy for the whole world to use.