ScienceIQ.com

There's No Such Thing as a Safe Suntan

Every time you step outdoors, you are bombarded by ultraviolet (UV) radiation from the sun. UV rays cause the number of free radicals in cells to increase. Free radicals are atoms or molecules that contain oxygen in a highly reactive form. They are the same kinds of compounds that cause iron to rust, stone to crumble, and paint to peel. In living ...

Continue reading...

SafeSuntan
Astronomy

From Here To There

We all know that our galaxy, the Milky Way, is big -- very big. So big in fact that its size is impossible to grasp. To cope with the astronomical distances of galaxies, since miles or kilometers ... Continue reading

HereToThere
Chemistry

Take Two And Call Me In The Morning

Aspirin has been used for hundreds of years to relieve pain and reduce inflammation. It belongs to a group of chemicals called salicylates and was originally derived from the bark of the willow tree. ... Continue reading

Aspirin
Chemistry

What Is Arsenic?

Arsenic is a naturally occurring element widely distributed in the earth's crust. In the environment, arsenic is combined with oxygen, chlorine, and sulfur to form inorganic arsenic compounds. Arsenic ... Continue reading

WhatIsArsenic
Astronomy

The Color of The Sunset

Color in the form of pigment does not exist in the atmosphere. Instead, the color we see in the sky results from the scattering, refraction, and diffraction of sunlight by particles in the atmosphere, ... Continue reading

SunsetColor

Cosmos Provides Astronomers with Planet-Hunting Tool

PlanetHuntingToolIf only astronomers had a giant magnifying glass in space, they might be able to uncover planets around other stars. Now they do -- sort of. Instead of magnifying a planet, astronomers used the magnifying effects of one star on a more distant star to reveal a planet around the closer star. The discovery marks the first use of a celestial phenomenon known as microlensing to locate a planet outside our solar system. A star or planet can act as a cosmic lens to magnify and brighten a more distant star lined up behind it. That's because the gravitational field of the foreground star bends and focuses light, like a glass lens bending and focusing starlight in a telescope. Albert Einstein predicted this effect in his theory of general relativity and confirmed it with our Sun.

The newly discovered star-planet system is 17,000 light years away, in the constellation Sagittarius. The planet, orbiting a red dwarf parent star, is most likely one-and-a-half times bigger than Jupiter. The planet and star are three times farther apart than Earth and the Sun.Together, they magnify a farther, background star some 24,000 light years away, near the Milky Way center. In most prior microlensing observations, scientists saw a typical brightening pattern, or light curve, indicating that a star's gravitational pull was affecting light from an object behind it. The latest observations revealed extra spikes of brightness, indicating the existence of two massive objects.

Dr. Bohdan Paczynski of Princeton University, Princeton, N.J., an OGLE team member, first proposed using gravitational microlensing to detect dark matter in 1986. In 1991, Paczynski and his student, Shude Mao, proposed using microlensing to detect extrasolar planets. Two years later, three groups reported the first detection of gravitational microlensing by stars. Earlier claims of planet discoveries with microlensing are not regarded as definitive, since they had too few observations of the apparent planetary brightness variations.