ScienceIQ.com

Luck Of The Irish?

In the 1800s many Irish were poor tenant farmers who farmed mainly for the landowner and relied on small plots for their own food. Because high yields of potatoes could be obtained from these small plots, this was their main source of food. In other European countries, small farmers grew other high yielding crops like parsnips and cabbage and were ...

Continue reading...

LuckOfTheIrish
Engineering

Seeing In The Dark

In the movies, there are all sorts of nasty things that can see perfectly well in the dark. More realistic movies also boast their share of 'beasts' that can see in the dark. Who could forget the ... Continue reading

SeeingInTheDark
Biology

The Dogma of Life

Dogmas are authoritative tenets common in religion and philosophy. But in molecular biology? Molecular biology has a central dogma, proposed by Francis Crick in 1953, that says that genetic ... Continue reading

MolecularBiology
Medicine

When and Why is Blood Typing Done?

Fans of the popular television show ER know how important blood type is in an emergency. 'Start the O-neg,' shouts Doctor Green, and the team swings into action. Green calls for type O, Rh-negative ... Continue reading

BloodTypes
Medicine

Who was Typhoid Mary?

Mary Mallon lived in New York about 100 years ago, and worked as a cook. It seemed that every family she worked for suffered an outbreak of typhoid fever! The Dept. of Public Health found that she ... Continue reading

WhowasTyphoidMary

Antimatter Discovery

AntimatterDiscoveryIn almost every science fiction movie ever made, you are bound to hear about antimatter –– matter-antimatter propulsion drives, whole galaxies made of antimatter, and so on. Antimatter has been used in science fiction so much that some of us are not even sure if it is real or just imaginary. Here's a hint: antimatter is real and it was discovered a long time ago.

It all started with Paul Dirac, a British physicist, who in 1930 devised the first relativistic theory of the electron. Quantum mechanics had been worked out a couple of years earlier (by Dirac and by Heisenberg, independently), but Dirac’s 1930 theory contained math that exactly modeled electron behavior, both from the quantum mechanical and from the relativistic point of view (electrons moving at close to light speeds). His theory also predicted the existence of an anti-electron; a particle just like an electron, with the same mass but opposite charge (i.e. positive) and opposite magnetic momentum. If you fire such a particle into a magnetic field which is perpendicular to the particle’s trajectory, its path would curve opposite to that of an electron.

In 1932, Carl Anderson, a US physicist, while examining tracks of particles produced by cosmic rays, noticed one track whose curvature was identical to that of an electron but was flipped. Instead of curving to the right, it curved to the left. He named this positively charged electron a positron, the first antimatter particle discovered. Many anti-particles have been discovered since. The anti-proton was discovered in 1955 by E. Segre and his coworkers at the Lawrence Berkeley Laboratory using a high-energy particle accelerator. Most other anti-particles have been discovered at particle accelerators under carefully designed conditions. Many experimental groups have also reported constructing bigger entities than just anti-particles. In fact, whole anti-nuclei have been constructed, for example anti-hydrogen nuclei and an isotope of anti-helium.