ScienceIQ.com

What is Volcanic Ash?

Small jagged pieces of rocks, minerals, and volcanic glass the size of sand and silt (less than 1/12 inch or 2 millimeters in diameter) erupted by a volcano are called volcanic ash. Very small ash particles can be less than 1/25,000th of an inch (0.001 millimeter) across. Though called 'ash,' volcanic ash is not the product of combustion, like the ...

Continue reading...

VolcanicAsh
Astronomy

Will the Sun Shine Forever?

The Sun is a huge nuclear furnace. It operates by converting hydrogen into helium. In this process, which is called nuclear fusion, it loses mass and produces energy according to Einstein's famous ... Continue reading

SunLifetime
Geology

Distant Mountains Influence River Levels 50 Years Later

Rainfall in the mountains has a major influence on nearby river levels, and its effects can be seen as much as 50 years after the rain has fallen, according to hydrologists funded by the National ... Continue reading

RiverLevels
Astronomy

It's Gonna Hit Us... Or Is It?

Recently, some astronomers were concerned that a newly discovered asteroid might hit Earth in 2017. This was big news because even the impact of a modest-sized asteroid could have a devastating ... Continue reading

MeteorHit
Biology

The Egg-citing Egg

How many chicken eggs have you eaten in your life? If it is any gauge, the per capita consumption of eggs by Americans is over 250 per year. Eggs are not only found on your breakfast plate, but in ... Continue reading

Eggs

What Makes a Frisbee Fly?

FrisbeeIf you have ever been to the park or the beach, you've probably seen one of these plastic discs flying through the air. We're not talking about a UFO, we're talking about the Frisbee, more commonly known as the flying disc. What makes a Frisbee fly? Just like a bird's wing or the wing of an airplane, shape plays a large part in influencing the flying ability of the Frisbee.

If we take a look at the Frisbee from the side, we can see that the rounded edges of the Frisbee look similar to the front edge of an aircraft wing. We know that the curved upper surface of the wing is what generates (causes) lift. The same principle applies to the Frisbee. As air passes over the curved upper surface of the Frisbee it speeds up, creating a low pressure region on top of the Frisbee. Below the Frisbee, air passes more slowly, creating a high pressure region. The difference in pressure gives the Frisbee lift. The shape of the Frisbee generates lift, but it needs more than that for flight.

Try throwing a Frisbee without spinning it. Notice how it wobbles and tumbles. The shape of the Frisbee may be generating lift, but the Frisbee is unstable. It cannot stay upright and eventually stalls (falls). All flying things must have something that makes them stable during flight; airplanes and birds have tails, rockets have fins. For a Frisbee, it is the spinning motion generated from the Frisbee throw that stabilizes the Frisbee as it flies.