ScienceIQ.com

What Are The Differences Between Global Warming, Greenhouse Effect, Greenhouse Warming, And Climate Change?

The term Global Warming refers to the observation that the atmosphere near the Earth's surface is warming, without any implications for the cause or magnitude. This warming is one of many kinds of climate change that the Earth has gone through in the past and will continue to go through in the future. Temperature increases will have significant ...

Continue reading...

GreenhouseEffectClimate Change
Astronomy

Pluto: Beyond Neptune Or Not?

Did I catch you? Pluto (newly classified as a dwarf-planet) comes after planet Neptune. Right? Depends. Pluto takes 248 years to orbit the Sun. Most of that time Pluto's orbit puts it outside the ... Continue reading

Pluto
Physics

The Doppler Effect

As any object moves through the air, the air near the object is disturbed. The disturbances are transmitted through the air at a distinct speed called the speed of sound, because sound itself is just ... Continue reading

TheDopplerEffect
Astronomy

Amazing GRACE

Gravity has an effect on everyone and everything on Earth. Although we can't see it, smell it, taste it or touch it, we know it's there. Although scientists already know quite a bit about this ... Continue reading

AmazingGRACE
Engineering

X-Ray Astronomy vs. Medical X-Rays

It's natural to associate the X-rays from cosmic objects with an X-ray from the doctor's office, but the comparison is a bit tricky. A doctor's X-ray machine consists of two parts: an X-ray source at ... Continue reading

XRayAstronomyvsMedicalXRays

Neutron Stars

NeutronStarsOrdinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% open space!

What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see-or feel-the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons!

Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. The result is a tiny star that is like a gigantic nucleus and has no empty space. Neutron stars are strange and fascinating objects. They represent an extreme state of matter that physicists are eager to know more about. Yet, even if you could visit one, you would be well-advised to turn down the offer.