ScienceIQ.com

New Evidence Points to a Gamma-Ray Burst... In Our Own Backyard

Only 35,000 light years away lies W49B, the supernova remnant left over from the cataclysmic burst. New evidence pointing to a gamma ray burst origin for this remnant was discovered by X-ray data from the Chandra X-ray Observatory, combined with infrared observations from the Palomar 200-inch telescope in southern California. The discovery is ...

Continue reading...

GammaRayBurst
Medicine

My Aching Back

The back is an intricate structure of bones, muscles, and other tissues that form the posterior part of the body’s trunk, from the neck to the pelvis. The centerpiece is the spinal column, which not ... Continue reading

MyAchingBack
Biology

Will That Be One Hump or Two?

Camels are highly adaptive to their environments. Often called the ships of the desert, they have been domesticated by humans for thousands of years, as beasts of burden and as transportation. What ... Continue reading

Humps
Geology

Is Earth Getting Fatter Around the Belt?

Besides being used for transmission of this email message to you, communication satellites are used for some neat science. By shooting a laser beam onto them and measuring how long it takes for light ... Continue reading

EarthBelt
Medicine

Legionnaires' Disease

Legionnaires' disease, which is also known as Legionellosis, is a form of pneumonia. It is often called Legionnaires' disease because the first known outbreak occurred in the Bellevue Stratford Hotel ... Continue reading

LegionnairesDisease

Liquid Crystal Communication

LiquidCrystalCommunicationThe Information Age rides on beams of carefully controlled light. Because lasers form the arteries of modern communications networks, dexterous manipulation of light underpins the two definitive technologies of our times: telecommunications and the Internet. Now researchers at Harvard University have developed a new way of steering and manipulating light beams. Using droplets of liquid crystals--the same substance in laptop displays--the scientists can make a pane of glass that quickly switches from transparent to diffracting and back again. When the pane is transparent a laser beam passes straight through, but when the pane is diffracting, it splits the beam, bending it in several new directions.

The change is triggered by applying an electric field, so the pane could easily be controlled by the electric signals of a computer, offering a powerful new way to steer beams of light. Beyond telecommunications, one could imagine this light-steering ability being useful in astronomy. For example, these liquid-crystal panes could be used in reverse to combine (rather than split) beams of light from multiple telescopes. Combining light from many telescopes, a technique called interferometery, is a good way to search for distant planets around other stars. Another application: a liquid crystal pane held in front of the mirror of a telescope could be used to 'unwrinkle' light that has passed through Earth's turbulent atmosphere. Such adaptive optics telescopes could gain a crystal-clear view of the heavens from Earth's surface.

Liquid crystals are a class of liquids whose molecules are more orderly than molecules in regular fluids. Because of this orderliness, when these liquids interact with light, they can affect the light like crystals do. Making droplets of liquid crystals is nothing new; the basic technology has been around since the mid-1980s. Today you can find such droplets in the window-walls of some executives' offices. With the flip of a switch, the office's transparent windows magically change to opaque walls somewhat like frosted glass.