ScienceIQ.com

Eukaryotic Organisms

Eukaryotes include fungi, animals, and plants as well as some unicellular organisms. Eukaryotic cells are about 10 times the size of a prokaryote and can be as much as 1000 times greater in volume. The major and extremely significant difference between prokaryotes and eukaryotes is that eukaryotic cells contain membrane-bound compartments in which ...

Continue reading...

EukaryoticOrganisms
Physics

Ultraviolet Light

Ultraviolet light is a form of radiation which is not visible to the human eye. It's in an invisible part of the 'electromagnetic spectrum'. Radiated energy, or radiation, is given off by many ... Continue reading

UltravioletLight
Chemistry

Ozone: Good Up High, Bad Nearby

Ozone is a gas that forms in the atmosphere when 3 atoms of oxygen are combined (03). It is not emitted directly into the air, but at ground level is created by a chemical reaction between oxides of ... Continue reading

Ozone
Physics

The Doppler Effect

As any object moves through the air, the air near the object is disturbed. The disturbances are transmitted through the air at a distinct speed called the speed of sound, because sound itself is just ... Continue reading

TheDopplerEffect
Engineering

Man Versus Machine

Computers and automation are designed to help people. It sounds so simple. If you've ever tried to use a machine that looks easy but turns out to be complicated and confusing, however, you know that ... Continue reading

ManMachine

How We Use Crystals To Tell Time

CrystalsQuartz clock operation is based on the piezoelectric property of quartz crystals. If you apply an electric field to the crystal, it changes its shape, and if you squeeze it or bend it, it generates an electric field. When put in a suitable electronic circuit, this interaction between mechanical stress and electric field causes the crystal to vibrate and generate an electric signal of relatively constant frequency that can be used to operate an electronic clock display.

Quartz crystal clocks were better because they had no gears or escapements to disturb their regular frequency. Even so, they still relied on a mechanical vibration whose frequency depended critically on the crystal's size, shape and temperature. Thus, no two crystals can be exactly alike, with just the same frequency. Such quartz clocks and watches continue to dominate the market in numbers because their performance is excellent for their price. But the timekeeping performance of quartz clocks has been substantially surpassed by atomic clocks.