ScienceIQ.com

Voyager Phone Home

After historic visits to Jupiter and Saturn, Voyager 1 is now on course to be the first human-made object to leave our solar system. In space for more than 25 years, it has already traveled farther than any other spacecraft. It is not clear when Voyager 1 will reach the heliopause boundary, where the influence of our Sun ends. The boundary is ...

Continue reading...

Voyager
Geology

Types of Volcanoes

Geologists describe four types of volcanoes. Cinder cones, the simplest of volcanoes, grow as pieces of congealed lava rise from a central vent and form a funnel-shaped crater. Lava domes arise from ... Continue reading

TypesofVolcanoes
Chemistry

Knocking the NOx Out of Coal

Nitrogen is the most common part of the air we breathe. In fact, about 80% of the air is nitrogen. Normally, nitrogen atoms float around joined to each other like chemical couples. But when air is ... Continue reading

KnockingtheNOxOutofCoal
Biology

Bacteria Sometimes Catch A Virus

Bacteria sometimes catch a virus. Bacteriophages--'bacteria-eaters'-- or phages, are viruses that use bacteria to multiply. The phage attaches to a bacterium, injects its own genetic material, either ... Continue reading

BacteriaSometimesCatchAVirus
Engineering

X-Ray Images & False Color

The colors we see in the world around us are the result of the way that the human eye and brain perceive different wavelengths of light in the visible part of the electromagnetic spectrum. X-rays, and ... Continue reading

XRayColor

Near-Earth Supernovas

SupernovasSupernovas near Earth are rare today, but during the Pliocene era of Australopithecus supernovas happened more often. Their source was an interstellar cloud called 'Sco-Cen' that was slowly gliding by the solar system. Within it, dense knots coalesced to form short-lived massive stars, which exploded like popcorn.

Researchers estimate (with considerable uncertainty) that a supernova less than 25 light years away would extinguish much of the life on Earth. The blast needn't incinerate our planet. All it would take is enough cosmic rays to damage the ozone layer and let through lethal doses of ultraviolet (UV) radiation. Our ancestors survived the Pliocene blasts only because the supernovas weren't quite so close. We know because we can still see the cloud today. It's 450 light years from Earth and receding in the direction of the constellations Scorpius and Centaurus (hence the cloud's name, 'Sco-Cen'). Astronomer Jesus Maiz-Apellaniz of Johns Hopkins University recently backtracked Sco-Cen's motion and measured its closest approach: 130 light years away about 5 million years ago.

Sco-Cen was still nearby only two million years ago when many plankton, mollusks, and other UV-sensitive marine creatures on Earth mysteriously died. Paleontologists mark it as the transition between the Pliocene and Pleistocene epochs. Around the same time, according to German scientists who have examined deep-sea sediments from the Pliocene era, Earth was peppered with Fe60, an isotope produced by supernova explosions. Coincidence? No one knows. It's a puzzle researchers are still piecing together.