ScienceIQ.com

Uncharted Meteors

In 1967, NASA's Mariner 4 spacecraft was cruising through the solar system, not far from Earth, when something unexpected happened. 'Mariner 4 ran into a cloud of space dust,' says Bill Cooke of the Marshall Space Flight Center Space Environments Team. 'For about 45 minutes the spacecraft experienced a shower of meteoroids more intense than any ...

Continue reading...

UnmappedMeteors
Astronomy

Laser Guide Stars

Did you ever wonder why we have to have the Hubble Space Telescope so high up in the Earth's orbit? Why not just make a bigger and better telescope on the surface? ... Continue reading

LaserGuideStars
Biology

The Razor-sharp Surgeonfish

As any diver can tell you, the waters under the sea can be beautiful and dangerous. The oceans are full of venemous fish, sharks, stinging jellies, manta rays and an assortment of spiny urchins and ... Continue reading

RazorsharpSurgeonfish
Physics

The Physics of Sandcastles

Give a plastic bucket and a shovel to a child, then turn her loose on a beach full of sand. She'll happily toil the day away building the sandcastle to end all sandcastles. It's pure fun. It's also ... Continue reading

Sandcastles
Biology

What Elements Are Required By Animals And Plants For Survival?

An understanding of our fragile environment can begin with a recognition of the importance of certain elements, commonly called 'mineral substances' (such as iron and zinc), in the lives of humans and ... Continue reading

AnimalsPlantsSurvival

Single Molecule Electroluminescence

ElectroluminescenceIncandescence and luminescence are two main ways of producing light. In incandescence, electric current is passed through a conductor (filament of a light bulb for example). The resistance to the current in the conductor heats it up and it starts emitting light - glowing. Any other form of producing light without heat is called Luminescence, sometimes referred to as 'cold light'. There are various types of luminescence: electroluminescence, chemiluminescence, photoluminescence, etc.

Most glow in the dark toys work on the photoluminescence principle: you expose the dye in the toy to UV - Ultra Violet light (black light) and it emits light in the visible (say green) without getting hot. Emergency light sticks would be an example of chemiluminescence. Two chemicals contained in the stick are mixed when you break the stick and the chemical reaction between them produces light, again without the stick getting hot. Electroluminescence, however, is a phenomenon where electric field energy is converted into light. Plug-in night lights, light emitting diodes, and some displays work on this principle.

Electroluminescent technology has been around for some time; however a research group from the Georgia Institute of Technology has recently made a breakthrough. They produced electroluminescence from a single molecule of silver. They exposed thin films of silver oxide, which are not electroluminescent, to direct current of approximately one ampere. This activated some of the silver oxide molecules, which then appeared within discolored regions in the film (image part A). When electrodes carrying alternating current were then attached to the film a thin line of silver clusters began to emit light in colors that varied depending on the size of the clusters (image part B). When they zoomed in (image part C), single molecule light emission signatures were visible. This was a first observation of a single molecule electroluminescence. Further research may lead to small light sources that can be used on computer chips, small optical memories, high-efficiency quantum information processing and cryptography.