ScienceIQ.com

What Is Acetone?

Acetone is a manufactured chemical that is also found naturally in the environment. It is a colorless liquid with a distinct smell and taste. It evaporates easily, is flammable, and dissolves in water. It is also called dimethyl ketone, 2-propanone, and beta-ketopropane. Acetone is used to make plastic, fibers, drugs, and other chemicals. It is ...

Continue reading...

WhatIsAcetone
Astronomy

Will the Sun Shine Forever?

The Sun is a huge nuclear furnace. It operates by converting hydrogen into helium. In this process, which is called nuclear fusion, it loses mass and produces energy according to Einstein's famous ... Continue reading

SunLifetime
Medicine

Rocky Mountain Spotted Fever

Rocky Mountain spotted fever (RMSF) is caused by tiny bacteria called rickettsiae that live inside the cells of infected individuals. It has been reported throughout the United States, but is most ... Continue reading

RockyMountainSpottedFever
Engineering

Space Lasers Keep Earth's Air Clean

Space laser technology is coming to our smokestacks and automobiles. Leave it to NASA to take its inventions to another level, helping to keep our air clean and breathable. A recent NASA invention, ... Continue reading

SpaceLasersKeepEarthsAirClean
Engineering

The Right Stuff for Super Spaceships

Revolutions in technology - like the Industrial Revolution that replaced horses with cars - can make what seems impossible today commonplace tomorrow. ... Continue reading

SuperSpaceships

Neurons

NeuronsUntil recently, most neuroscientists thought we were born with all the neurons we were ever going to have. As children we might produce some new neurons to help build the pathways - called neural circuits - that act as information highways between different areas of the brain. But scientists believed that once a neural circuit was in place, adding any new neurons would disrupt the flow of information and disable the brain's communication system. In 1962, scientist Joseph Altman challenged this belief when he saw evidence of neurogenesis (the birth of neurons) in a region of the adult rat brain called the hippocampus. He later reported that newborn neurons migrated from their birthplace in the hippocampus to other parts of the brain. In 1979, another scientist, Michael Kaplan, confirmed Altman's findings in the rat brain, and in 1983 he found neural precursor cells in the forebrain of an adult monkey.

These discoveries about neurogenesis in the adult brain were surprising to other researchers who didn't think they could be true in humans. But in the early 1980s, a scientist trying to understand how birds learn to sing suggested that neuroscientists look again at neurogenesis in the adult brain and begin to see how it might make sense. In a series of experiments, Fernando Nottebohm and his research team showed that the numbers of neurons in the forebrains of male canaries dramatically increased during the mating season. This was the same time in which the birds had to learn new songs to attract females.

Why did these bird brains add neurons at such a critical time in learning? Nottebohm believed it was because fresh neurons helped store new song patterns within the neural circuits of the forebrain, the area of the brain that controls complex behaviors. These new neurons made learning possible. If birds made new neurons to help them remember and learn, Nottebohm thought the brains of mammals might too. For some neuroscientists, neurogenesis in the adult brain is still an unproven theory. But others think the evidence offers intriguing possibilities about the role of adult-generated neurons in learning and memory.