ScienceIQ.com

You, Graphite and Diamonds

Living things, including you and me, and diamonds, are made of the same substance: the element carbon (C). Carbon atoms in our bodies are bound to other atoms, such as hydrogen and oxygen, in organic molecules, while those in a diamond are bound to other carbon atoms to form a pure crystalline structure. Another form of pure carbon is graphite. ...

Continue reading...

GraphiteDiamonds
Medicine

The Plague

Plague is an infectious disease caused by the bacterium Yersinia pestis. The bacterium is found mainly in rodents, particularly rats, and in the fleas that feed on them. Other animals and humans ... Continue reading

ThePlague
Biology

If You're Bringing Cows, Bring Your Own Decomposers

Living organisms create a lot of waste products. Every year they deposit millions of tons of dead plant and animal matter on almost every corner of the earth - and they make dung, lots of dung. Where ... Continue reading

CowsAndDecomposers
Astronomy

Ancient Planet

Long before our Sun and Earth ever existed, a Jupiter-sized planet formed around a sun-like star. Now, almost 13 billion years later, NASA's Hubble Space Telescope has precisely measured the mass of ... Continue reading

AncientPlanet
Engineering

Taming Twin Tornadoes

Every time a jet airplane flies through the sky, it creates two invisible tornados. They're not the kind of tornados that strike in severe weather. These tornados are called vortices and can cause ... Continue reading

TwinTornadoes

Pangea

PangeaFrom about 280-230 million years ago, (Late Paleozoic Era until the Late Triassic) the continent we now know as North America was continuous with Africa, South America, and Europe. Pangea first began to be torn apart when a three-pronged fissure grew between Africa, South America, and North America. Rifting began as magma welled up through the weakness in the crust, creating a volcanic rift zone. Volcanic eruptions spewed ash and volcanic debris across the landscape as these severed continent-sized fragments of Pangea diverged. The gash between the spreading continents gradually grew to form a new ocean basin, the Atlantic. The rift zone known as the mid-Atlantic ridge continued to provide the raw volcanic materials for the expanding ocean basin.

Meanwhile, North America was slowly pulled westward away from the rift zone. The thick continental crust that made up the new east coast collapsed into a series of down-dropped fault blocks that roughly parallel today's coastline. At first, the hot, faulted edge of the continent was high and buoyant relative to the new ocean basin. As the edge of North America moved away from the hot rift zone, it began to cool and subside beneath the new Atlantic Ocean. This once-active divergent plate boundary became the passive, trailing edge of westward moving North America. In plate tectonic terms, the Atlantic Plain is known as a classic example of a passive continental margin.

Sediments eroded from the Appalachian and other inland highlands were carried east and southward by streams and gradually covered the faulted continental margin, burying it under a wedge, thousands of feet thick, of layered sedimentary and volcanic debris. Today most Mesozoic and Cenozoic sedimentary rock layers that lie beneath much of the coastal plain and fringing continental shelf remain nearly horizontal or tilt gently toward the sea.