ScienceIQ.com

Electricity and the Brain

A child's electric train and our brains have something in common. They both require electricity for any activity to take place. But the brain uses electricity in a much different way than a toy train. ...

Continue reading...

BrainElectricity
Geology

The World's Biggest Popsicle

Stored in a commercial freezer in France, along with quite a lot of frozen meat and cheese, is about 15 kilometers' worth of ice cores, taken from glaciers in Greenland and Antarctica. Each giant ... Continue reading

TheWorldsBiggestPopsicle
Chemistry

How Sublime

Show of hands. How many of you can't resist playing with dry ice? Dry ice is carbon dioxide frozen to -109.3 degrees F (-78.5 C). Throw a piece in water and it bubbles and boils. Expose a piece to air ... Continue reading

DryIce
Medicine

Mad Cow Disease

In 1986, the first case of 'mad cow' disease or bovine spongiform encephalopathy (BSE) was found in cattle in Great Britain. Irritable personalities, fearful behavior, and a staggering gait preceded ... Continue reading

MadCowDisease
Biology

What Is Coral Bleaching?

Certain types of stressors, such as increased sea surface temperatures or toxic exposures to oil, can cause coral polyps to lose their pigmented zooxanthellae, or to 'bleach.' Bleaching occurs ... Continue reading

WhatIsCoralBleaching

A Man-made 'Take' on Nature's Style

ACMNatureAdvanced Composite Materials, (ACMs) are, as the name implies, composite materials. However, they consist exclusively of man-made specialty fibers bound in a matrix of plastics. The variety of such materials is nothing short of spectacular, and the development and application of new ACMs are among the fastest-growing sectors of modern technological endeavors. Most people get their first introduction to the world of ACMs through 'fiberglass', a composite material in which fine glass fibers are bound into a thick sheet of polyester resin. Relatively light and strong, fiberglass is one of the most generally useful and therefore most common of ACMs.

Any fiber can be used for ACMs, on the condition that the fiber material is compatible with the matrix material and visa versa. This relationship is essentially true, but in a practical sense only fibers that are easy to produce or that have certain properties see widespread use in ACMs. Similarly, only resins and plastics with certain properties of strength, durability, and formability see widespread use in ACMs. It goes without saying that the fiber materials and the matrix materials must not react chemically with each under under any circumstances.

ACMs are used in the air, for military aircraft undetectable by radar, planes that fly so fast that they must be maneuvered by actually changing the shape of their wings and body instead of by the use of standard flaps and rudders; on the ground, for cars weighing only a few hundred pounds and containing almost no metal parts at all; for bridges that can be assembled in a matter of hours from prefabricated parts, containing no metal parts or fasteners; and for high-traffic roadway constructed of plastic and glass fibers that carry the steady flow of vehicles smoothly across the rough terrain. And anyone who has ever watched Olympic competition has seen a broad range of equipment and material all made of ACMs. All these things are made possible through the use of advanced composite materials.