ScienceIQ.com

A Creature Only A Mother Could Love?

A creature only a mother could love isn't even much loved by its own mother. The Komodo dragon, weighing as much as 300 lbs. (136 kgs) or more, eats more than half its own weight in one meal. It swallows large chunks of meat whole, often consuming an animal in three or four bites. And it eats nearly anything: goats, wild pigs, boar, deer, water ...

Continue reading...

MotherLove
Physics

The World's Largest Laser

In a rural community in Northern California, in a building spanning the length of two football fields scientists are creating the world's largest laser. The National Ignition Facility project, know as ... Continue reading

LargestLaser
Engineering

Non-Flammable Fuel?

When we're flying high above the Earth, few of us give much thought to aircraft safety. We're usually too busy wondering when lunch is going to be served. But flying safely is a goal of NASA's Glenn ... Continue reading

NonFlammableFuel
Science

NASA's First Historic Challenge

In a time of uncertainty at home and abroad, an American president proposes bold new steps in the exploration of space. He calls for 'longer strides' which 'may hold the key to our future here on ... Continue reading

NASAsFirstHistoricChallenge
Medicine

What is Asthma?

In many people, asthma appears to be an allergic reaction to substances commonly breathed in through the air, such as animal dander, pollen, or dust mite and cockroach waste products. The catch-all ... Continue reading

WhatisAsthma

Torque

TorqueA force may be thought of as a push or pull in a specific direction. When a force is applied to an object, the object accelerates in the direction of the force according to Newton's laws of motion. The object may also experience a rotation depending on how the object is confined and where the force is applied. A hanging door is an excellent example of this type of motion. When you push on a door it can not freely translate because it is confined (or pinned) by the hinges. It does, however, rotate on the hinges. The rotation itself depends on where you apply the force. As you get closer to the hinge, you must apply a larger force to make the door swing. As you get farther from the hinge, you can apply a smaller force to make the door swing.

The product of the force and the distance from a pivot (or hinge) is called the torque or the moment. Torques produce rotations in the same way that forces produce translations. Namely, an object at rest, or rotating at a constant angular velocity, will continue to do so until it is subject to an external torque. A torque produces an angular acceleration or change in angular velocity. If an object is not pinned, it rotates about its center of gravity when acted upon by an external force. The distance used in the calculation of the torque is then the distance from the center of gravity to the applied force.

Aeronautical engineers use the torque generated by aerodynamic surfaces to stabilize and control aircraft. On airplanes, the control surfaces produce aerodynamic forces. These forces are applied at some distance from the aircraft cg and therefore cause the aircraft to rotate. The elevators produce a pitching moment, the rudder produce a yawing moment, and the ailerons produce a rolling moment. The ability to vary the amount of the force and the moment allows the pilot to maneuver or to trim the aircraft. On model rockets, the fins are used to generate a torque about the rocket center of gravity to provide stability during powered flight. On kites, the aerodynamic and weight forces produce a torque about the bridle point. The distance from the bridle point and the magnitude of the forces has a strong effect on the performance of the kite.