ScienceIQ.com

Right Ascension & Declination

Right Ascension (abbreviated R.A.) and Declination (abbreviated Dec) are a system of coordinates used by astronomers to keep track of where stars and galaxies are in the sky. They are similar to the system of 'longitude' and 'latitude' used on the Earth. Declination is measured in degrees, and refers to how far above the imaginary 'celestial ...

Continue reading...

RightAscensionDeclination
Astronomy

What Powered the Big Bang?

During the last decade, sky maps of the radiation relic of the Big Bang---first by NASA's Cosmic Background Explorer (COBE) satellite and more recently by other experiments, including Antarctic ... Continue reading

WhatPoweredtheBigBang
Astronomy

New Evidence Points to a Gamma-Ray Burst... In Our Own Backyard

Only 35,000 light years away lies W49B, the supernova remnant left over from the cataclysmic burst. New evidence pointing to a gamma ray burst origin for this remnant was discovered by X-ray data from ... Continue reading

GammaRayBurst
Geology

A River of Sand

Next time you're at the beach or in the desert, climb a sand dune in bare feet on a windy day. Stand still in various places on the gently sloping windward side. Watch how wind-driven sand grains ... Continue reading

RiverOfSand
Astronomy

318 Times as Massive as Earth

What is 318 times more massive than Earth? Jupiter, the fifth planet from the Sun (next in line after Earth and Mars). Jupiter is the largest planet in our Solar System. If you decided to take a ... Continue reading

Jupiter

Stopping In Thin Air

StoppingInThinAirImagine you're going very fast -- much faster than a race car. In fact, imagine you're going 100 or 200 times faster than a race car. When you reach your destination, you need to stop relatively quickly. How would you do it? It wouldn't take a rocket scientist to think of using the brakes. But, it might take a rocket scientist to skip the brakes, and use nothing but thin air to slow down.That's the idea behind aerocapture, a technology currently being researched by NASA scientists. While a lot of spaceflight research being performed now deals with better and faster ways of reaching destinations in space, aerocapture is part of a field of research looking at better ways of stopping once you get there.

Traditionally, putting a spacecraft into orbit around another planet or landing a probe has required that the craft carry extra fuel to help it stop once it arrived at its destination. Given the concerns of cost and mass involved in launching a spacecraft, having to carry extra fuel for braking could place some major limitations on proposed science research missions--limiting the amount of scientific equipment that could be carried on some flights and ruling some missions out entirely. Aerocapture is a braking method that requires no extra fuel, but instead involves the use of a planet's atmosphere to slow down a spacecraft. Use of this technique could reduce the typical mass of an interplanetary spacecraft by half or more, allowing for a craft that is smaller and cheaper, but also better equipped to conduct long-term science research at its destination.

NASA researchers are currently developing technologies required to make aerocapture in interplanetary flight a reality, and are considering use of the technique for possible missions to Mars, Neptune, and Saturn's moon Titan. When the research is completed, and if those missions, or others similar to them, are successful, then some of the biggest challenges in interplanetary flight could disappear--into thin air.