ScienceIQ.com

Hybrid Cars: The Magic Braking

You have undoubtedly seen one of the hybrid cars on the road. You probably heard that they are unlike any other fossil fuel or electric car. They are sort of both. ...

Continue reading...

HybridCars
Mathematics

How To Calculate The Circumference Of A Circle

A circle is what you get if you take a straight line and bend it around so that its ends touch. You can demonstrate this by taking a piece of stiff wire and doing just that: bring the ends of the wire ... Continue reading

CircumferenceOfACircle
Biology

GM: Not For General Motors Anymore

Genetically Modified plants have been given genes from other plants or even other species, that make them better able to resist diseases and pests, or more nutritious, or more productive. The list of ... Continue reading

GMNotForGeneralMotorsAnymore
Physics

Your Own Personal Rainbow?

Did you know that no two people ever see the very same rainbow? It's true. Rainbows are formed when light enters a water droplet, reflects once inside the droplet, and is reflected back to our eyes ... Continue reading

Rainbows
Medicine

SARS: Mother Nature Strikes Again!

SARS, short for Severe Acute Respiratory Syndrome, is big news this spring. By the middle of April 2003, over 2000 people had been diagnosed with it in China and Hong Kong, another few hundred in the ... Continue reading

SARSMotherNatureStrikesAgain

Proteins In General

ProteinsInGeneralProteins form our bodies and help direct its many systems. Proteins are fundamental components of all living cells. They exhibit an enormous amount of chemical and structural diversity, enabling them to carry out an extraordinarily diverse range of biological functions.

Proteins help us digest our food, fight infections, control body chemistry, and in general, keep our bodies functioning smoothly. Scientists know that the critical feature of a protein is its ability to adopt the right shape for carrying out a particular function. But sometimes a protein twists into the wrong shape or has a missing part, preventing it from doing its job. Many diseases, such as Alzheimer's and 'mad cow', are now known to result from proteins that have adopted an incorrect structure.

Identifying a protein's shape, or structure, is key to understanding its biological function and its role in health and disease. Illuminating a protein's structure also paves the way for the development of new agents and devices to treat a disease. Yet solving the structure of a protein is no easy feat. It often takes scientists working in the laboratory months, sometimes years, to experimentally determine a single structure. Therefore, scientists have begun to turn toward computers to help predict the structure of a protein based on its sequence. The challenge lies in developing methods for accurately and reliably understanding this intricate relationship.