ScienceIQ.com

Is Earth Getting Fatter Around the Belt?

Besides being used for transmission of this email message to you, communication satellites are used for some neat science. By shooting a laser beam onto them and measuring how long it takes for light to bounce back, scientists at NASA measure precise orbits of a number of satellites and hence the Earth's gravitational field as a function of ...

Continue reading...

EarthBelt
Engineering

Hydropower Basics

Flowing water creates energy that can be captured and turned into electricity. This is called hydropower. Hydropower is currently the largest source of renewable power, generating nearly 10% of the ... Continue reading

HydropowerBasics
Astronomy

The Constellations

The random arrangement of the stars visible to the naked eye has remained essentially unchanged since the time of the first written records. One of the earliest complete lists we have was compiled in ... Continue reading

TheConstellations
Physics

The Coriolis Effect

The Earth, rotating at about 1000 miles per hour (1,609 km/hr), influences the flow of air and water on its surface. We call this the Coriolis Effect, named after French scientist Gaspard Coriolis, ... Continue reading

Coriolis
Physics

When Do We Encounter Ionizing Radiation In Our Daily Lives?

Everyone who lives on this planet is constantly exposed to naturally occurring ionizing radiation (background radiation). This has been true since the dawn of time. The average effective dose ... Continue reading

IonizingRadiation

NASA Explains Dust Bowl Drought

NASAExplainsDustBowlDroughtNASA scientists have an explanation for one of the worst climatic events in the history of the United States, the 'Dust Bowl' drought, which devastated the Great Plains and all but dried up an already depressed American economy in the 1930's. Siegfried Schubert of NASA's Goddard Space Flight Center, Greenbelt, Md., and colleagues used a computer model developed with modern-era satellite data to look at the climate over the past 100 years. The study found cooler than normal tropical Pacific Ocean surface temperatures combined with warmer tropical Atlantic Ocean temperatures to create conditions in the atmosphere that turned America's breadbasket into a dust bowl from 1931 to 1939. These changes in sea surface temperatures created shifts in the large-scale weather patterns and low level winds that reduced the normal supply of moisture from the Gulf of Mexico and inhibited rainfall throughout the Great Plains.

By discovering the causes behind U.S. droughts, especially severe episodes like the Plains' dry spell, scientists may recognize and possibly foresee future patterns that could create similar conditions. For example, La Ninas are marked by cooler than normal tropical Pacific Ocean surface water temperatures, which impact weather globally, and also create dry conditions over the Great Plains. The researchers used NASA's Seasonal-to-Interannual Prediction Project (NSIPP) atmospheric general circulation model and agency computational facilities to conduct the research. The NSIPP model was developed using NASA satellite observations, including; Clouds and the Earth's Radiant Energy System radiation measurements; and the Global Precipitation Climatology Project precipitation data.

The model showed cooler than normal tropical Pacific Ocean temperatures and warmer than normal tropical Atlantic Ocean temperatures contributed to a weakened low-level jet stream and changed its course. The jet stream, a ribbon of fast moving air near the Earth's surface, normally flows westward over the Gulf of Mexico and then turns northward pulling up moisture and dumping rain onto the Great Plains. As the low level jet stream weakened, it traveled farther south than normal. The Great Plains dried up and dust storms formed. The research shed light on how tropical sea surface temperatures can have a remote response and control over weather and climate. It also confirmed droughts can become localized based on soil moisture levels, especially during summer. When rain is scarce and soil dries, there is less evaporation, which leads to even less precipitation, creating a feedback process that reinforces lack of rainfall.