ScienceIQ.com

What is Haze?

Haze is caused when sunlight encounters tiny pollution particles in the air. Some light is absorbed by particles. Other light is scattered away before it reaches an observer. More pollutants mean more absorption and scattering of light, which reduce the clarity and color of what we see. Some types of particles such as sulfates, scatter more light, ...

Continue reading...

Haze
Astronomy

Lunar Explorations

Ever since the beginning of intelligent life on Earth, the moon has been a focal point of human curiosity. Galileo’s discovery in 1610 that the moon had craters, valleys and mountains, instead of the ... Continue reading

LunarExplorations
Biology

Left Nostril Right Brain

A recent experiment performed by researchers at Philadelphia's Monell Chemical Senses Center, probably the world's pre-eminent institution devoted to the study of smell, showed that the world smells ... Continue reading

LeftNostrilRightBrain
Engineering

Guide to Propulsion

What is propulsion? The word is derived from two Latin words: pro meaning before or forwards and pellere meaning to drive. Propulsion means to push forward or drive an object forward. A propulsion ... Continue reading

GuidetoPropulsion
Biology

Gray Wolf - Canis lupus

Historically, most Native Americans revered gray wolves, trying to emulate their cunning and hunting abilities. However, wolves became nearly extinct in the lower 48 states in the early part of the ... Continue reading

GrayWolfCanislupus

Blast Wave Blows Through the Solar System

BlastWaveSolarSystemAlthough the Sun provides the means for life on Earth, it has a dark side - the Sun regularly sends massive solar explosions of radiative plasma with the intensity of a billion megaton bombs hurtling through the solar system. Perhaps even more astounding, scientists now have the ability to track that energy billions of miles away thanks to an armada of explorers including Mars Odyssey, Ulysses, Cassini and the Voyagers, not to mention solar and Earth-orbiting craft. It was with this unprecedented scientific fleet that scientists observed the events that took place in late October and November when the Sun unleashed the most powerful solar flares ever detected. A sort of timeline emerged tracking the largest of the related coronal mass ejections (CMEs) from the Sun all the way to Voyager 1, then on to the heliopause which delineates our solar system from interstellar space. The force of the blast is expected to extend that region by as much as 400 million miles.

All told, about 17 major flares erupted on the Sun during those two weeks, the result of energy building up in the Sun's magnetic field lines until they become strained enough to suddenly snap like an overstretched rubber band. The related coronal mass ejections (CMEs) are the largest explosions in the solar system, capable of launching up to 10 billion tons of electrified gas into space, normally at speeds of one to two million miles an hour. While we're protected by Earth's magnetosphere and atmosphere, power grids, radio and GPS signals, satellites, and astronauts in space are vulnerable. Fortunately effects on Earth from these events were minimal, in effect a testament to the fleet of monitors that issued warnings as early as Oct. 21. At Mars, the MARIE instrument on the Mars Odyssey spacecraft was not as lucky. Ironically its task was to better understand solar radiation on Mars. It was able to make observations up until a powerful Oct. 28 CME overheated a power converter.

For future astronauts who travel to other planets, having a better understanding of solar events is crucial. Today careful monitoring makes sure that those on the International Space Station stay out of harm's way by warning them before big blasts so they can take cover in a more heavily shielded section of the station. They also have the benefit of some of Earth's magnetosphere as protection, something Mars-bound astronauts won't. Possible health risks from the energetic solar plasma include cancer, acute radiation sickness, hereditary effects, and damage to the central nervous system. And because different planets have different magnetic and atmospheric shielding and experience different effects from the solar wind on a daily basis, having detectors spread throughout the solar system is helping us to better understand our surroundings and make future plans. After all, who goes on a big trip without first checking the weather reports?