ScienceIQ.com

Does Your Brain Do Flips?

You may not be aware of it, but when you look at the world, the image projected on your retina is upside down. This is due to the optics used by our eyes. Our brain compensates for this upside down view and everything seems perfectly normal to us. ...

Continue reading...

BrainFlips
Engineering

Guide to Propulsion

What is propulsion? The word is derived from two Latin words: pro meaning before or forwards and pellere meaning to drive. Propulsion means to push forward or drive an object forward. A propulsion ... Continue reading

GuidetoPropulsion
Geology

Water In The Ground

Some water underlies the Earth's surface almost everywhere, beneath hills, mountains, plains, and deserts. It is not always accessible, or fresh enough for use without treatment, and it's sometimes ... Continue reading

WaterInTheGround
Engineering

Does Anybody Really Know What Time It Is?

So, what, exactly, is the watch on your wrist, Big Ben in London, or the national atomic clock in Boulder, Colorado, actually measuring? The first definition of a second was 1/86,400 of the average ... Continue reading

TimeAnybody
Biology

Why Aren't Mice More Like Us?

The sequence of the human genome was published two years ago, and recently, the sequence of the mouse genome was published. Amazingly, 99% of mouse genes have a counterpart in people. So why are they ... Continue reading

Mice

What Powered the Big Bang?

WhatPoweredtheBigBangDuring the last decade, sky maps of the radiation relic of the Big Bang---first by NASA's Cosmic Background Explorer (COBE) satellite and more recently by other experiments, including Antarctic balloon flights and NASA's Wilkinson Microwave Anisotropy Probe (WMAP)---have displayed the wrinkles imprinted on the Universe in its first moments. Gravity has pulled these wrinkles into the lumpy Universe of galaxies and planets we see today. Yet still unanswered are the questions: why was the Universe so smooth before, and what made the tiny but all-important wrinkles in the first place?

Quantum fluctuations during the Big Bang are imprinted in gravitational waves, the cosmic microwave background, and in the structure of today's Universe. Studying the Big Bang means detecting those imprints. Einstein's theories led to the Big Bang model, but they are silent on these questions as well as the simplest: 'What powered the Big Bang?' Modern theoretical ideas that try to answer these questions predict that the wrinkles COBE discovered arose from two kinds of primordial particles: of the energy field that powered the Big Bang; and gravitons, fundamental particles of space and time.

Measurements by missions of the Beyond Einstein program could separate these different contributions, allowing us to piece together the story of how time, space, and energy worked together to power the Big Bang.