ScienceIQ.com

Phrenology

Does a bumpy head mean you're a brainy guy? In the 19th century, many people were absolutely convinced that bumps were the keys to understanding the human brain after Austrian medical student, Franz Joseph Gall, crafted the science of phrenology. The fundamental premise of this 'brainchild' of Gall was that the human mind was indeed like other ...

Continue reading...

Phrenology
Chemistry

Why does popcorn pop?

Popcorn is the most amazing food! It all starts with a kernel only several millimeters in diameter which explodes into a 40-50 times bigger fluffy, tasty, white wonder. The kernel is made of three ... Continue reading

WhyDoesPopcornPop
Biology

Electricity and the Brain

A child's electric train and our brains have something in common. They both require electricity for any activity to take place. But the brain uses electricity in a much different way than a toy train. ... Continue reading

BrainElectricity
Biology

Where is God in the Brain?

A British study reported that epileptics had 'profoundly spiritual experiences' in a specific region of the brain. In other studies, there was also a region of the brain that became extremely active ... Continue reading

BrainGod
Geology

A Big, Big Wave

A tsunami (pronounced 'soo-nah-mee') is a series of waves of extremely long wave length and long period generated in a body of water by an impulsive disturbance that vertically displaces the water. ... Continue reading

ABigBigWave

The Oldest Light in the Universe

OldestLightUniverseA NASA satellite has captured the sharpest-ever picture of the afterglow of the big bang. The image contains such stunning detail that it may be one of the most important scientific results of recent years. Scientists used NASA's Wilkinson Microwave Anisotropy Probe (WMAP) to capture the new cosmic portrait, which reveals the afterglow of the big bang, a.k.a. the cosmic microwave background. One of the biggest surprises revealed in the data is the first generation of stars to shine in the universe first ignited only 200 million years after the big bang, much earlier than many scientists had expected. In addition, the new portrait precisely pegs the age of the universe at 13.7 billion years, with a remarkably small one percent margin of error. The WMAP team found that the big bang and Inflation theories continue to ring true.

The contents of the universe include 4 percent atoms (ordinary matter), 23 percent of an unknown type of dark matter, and 73 percent of a mysterious dark energy. The new measurements even shed light on the nature of the dark energy, which acts as a sort of anti-gravity. The light we see today, as the cosmic microwave background, has traveled over 13 billion years to reach us. Within this light are infinitesimal patterns that mark the seeds of what later grew into clusters of galaxies and the vast structure we see all around us today. Patterns in the big bang afterglow were frozen in place only 380,000 years after the big bang, a number nailed down by this latest observation. These patterns are tiny temperature differences within this extraordinarily evenly dispersed microwave light bathing the universe, which now averages a frigid 2.73 degrees above absolute zero temperature. WMAP resolves slight temperature fluctuations, which vary by only millionths of a degree.

Theories about the evolution of the universe make specific predictions about the extent of these temperature patterns. Like a detective, the WMAP team compared the unique 'fingerprint' of patterns imprinted on this ancient light with fingerprints predicted by various cosmic theories and found a match. WMAP will continue to observe the cosmic microwave background for an additional three years, and its data will reveal new insights into the theory of Inflation and the nature of the dark energy. WMAP is named in honor of David Wilkinson of Princeton University, a world-renowned cosmologist and WMAP team member who died in September 2002.