ScienceIQ.com

Bioinformatics

Bioinformatics is the field of science in which biology, computer science, and information technology merge to form a single discipline. The ultimate goal of the field is to enable the discovery of new biological insights as well as to create a global perspective from which unifying principles in biology can be discerned. At the beginning of the ...

Continue reading...

Bioinformatics
Physics

Neutrinos to the Rescue

Have you ever wondered what the most abundant particle in the universe is after photons of light? The answer is: Neutrinos. These tiny, neutral and almost mass-less particles that move at almost the ... Continue reading

Neutrinos
Geology

Igneous Rocks, Born of Fire

Rocks are naturally occurring solid mixtures of substances primarily made of minerals. There are three kinds of rock on earth - igneous, sedimentary, and metamorphic rock. Sedimentary rock forms from ... Continue reading

IgneousRocksBornofFire
Chemistry

SO2: What is it? Where does it come from?

Sulfur dioxide, or SO2, belongs to the family of sulfur oxide gases (SOx). These gases dissolve easily in water. Sulfur is prevalent in all raw materials, including crude oil, coal, and ore that ... Continue reading

SO2
Physics

Can You Miss the Earth?

Have you ever wondered why astronauts float in space? Well, it isn't because there is no gravity in space. Astronauts float because they are in constant free fall. If a baseball pitcher throws a ... Continue reading

Weightlessness

Cosmos Provides Astronomers with Planet-Hunting Tool

PlanetHuntingToolIf only astronomers had a giant magnifying glass in space, they might be able to uncover planets around other stars. Now they do -- sort of. Instead of magnifying a planet, astronomers used the magnifying effects of one star on a more distant star to reveal a planet around the closer star. The discovery marks the first use of a celestial phenomenon known as microlensing to locate a planet outside our solar system. A star or planet can act as a cosmic lens to magnify and brighten a more distant star lined up behind it. That's because the gravitational field of the foreground star bends and focuses light, like a glass lens bending and focusing starlight in a telescope. Albert Einstein predicted this effect in his theory of general relativity and confirmed it with our Sun.

The newly discovered star-planet system is 17,000 light years away, in the constellation Sagittarius. The planet, orbiting a red dwarf parent star, is most likely one-and-a-half times bigger than Jupiter. The planet and star are three times farther apart than Earth and the Sun.Together, they magnify a farther, background star some 24,000 light years away, near the Milky Way center. In most prior microlensing observations, scientists saw a typical brightening pattern, or light curve, indicating that a star's gravitational pull was affecting light from an object behind it. The latest observations revealed extra spikes of brightness, indicating the existence of two massive objects.

Dr. Bohdan Paczynski of Princeton University, Princeton, N.J., an OGLE team member, first proposed using gravitational microlensing to detect dark matter in 1986. In 1991, Paczynski and his student, Shude Mao, proposed using microlensing to detect extrasolar planets. Two years later, three groups reported the first detection of gravitational microlensing by stars. Earlier claims of planet discoveries with microlensing are not regarded as definitive, since they had too few observations of the apparent planetary brightness variations.