ScienceIQ.com

Fibonacci Patterns In Nature?

Often it takes a second look to see how mathematical numbers and patterns fit into the natural world. Numbers, after all, are manmade. However some very interesting number patterns underlie some natural systems in a surprising way. One such number pattern is called the Fibonacci Series, where each subsequent number is the sum of the two preceding ...

Continue reading...

Fibonacci
Biology

Synchronicity

There's something called synchronicity that we've probably all experienced at one time or another. Some people prefer the term 'meaningful coincidence.' You're thinking about your friend from high ... Continue reading

Sinchronicity
Medicine

Civets Lesson

Recently a Chinese television producer fell ill with Severe Acute Respiratory Syndrome, better known as SARS. He is the first victim in many months, although an epidemic last year claimed nearly 8000 ... Continue reading

CivetsLesson
Astronomy

Cosmos Provides Astronomers with Planet-Hunting Tool

If only astronomers had a giant magnifying glass in space, they might be able to uncover planets around other stars. Now they do -- sort of. Instead of magnifying a planet, astronomers used the ... Continue reading

PlanetHuntingTool
Astronomy

The Sun’s Corona

The White-Light Corona - The Corona is the Sun's outer atmosphere. It is visible during total eclipses of the Sun as a pearly white crown surrounding the Sun. The corona displays a variety of features ... Continue reading

TheSunCorona

Black Hole Sound Waves

BlackHoleSoundWavesAstronomers using NASA's Chandra X-ray Observatory have found, for the first time, sound waves from a supermassive black hole. The 'note' is the deepest ever detected from any object in our Universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster of galaxies located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. Earlier observations had revealed the prodigious amounts of light and heat created by black holes. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance because the note is 57 octaves lower than middle-C.

For comparison, a typical piano contains only about seven octaves. At a frequency over a million billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the Universe. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays ought to cool because X-rays carry away some of the gas' energy. Dense gas near the cluster's center where X-ray emission is brightest should cool the fastest. As the gas cools, say researchers, the pressure should drop, causing gas from further out to sink toward the center. Trillions of stars ought to be forming in these gaseous flows. Yet scant evidence has been found for flows of cool gas or for star formation. This forced astronomers to invent several different ways to explain how gas contained in clusters remained hot.

None of them were satisfactory. Previous Chandra observations of the Perseus cluster reveal two vast, bubble-shaped cavities extending away from the central black hole. These cavities have been formed by jets of material pushing back the cluster gas. The jets, which are a counter-intuitive side effect of the black hole gobbling matter in its vicinity, have long been suspected of heating the surrounding gas. But the exact mechanism was unknown. The sound waves, seen spreading out from the cavities in the recent Chandra observation, could provide this heating mechanism. A tremendous amount of energy is needed to generate the cavities, as much as the combined energy from 100 million supernovas. Much of this energy is carried by the sound waves and should dissipate in the cluster gas, keeping the gas warm and possibly preventing a cooling flow. If so, the B-flat pitch of the sound wave, 57 octaves below middle-C, would have remained roughly constant for about 2.5 billion years.