ScienceIQ.com

318 Times as Massive as Earth

What is 318 times more massive than Earth? Jupiter, the fifth planet from the Sun (next in line after Earth and Mars). Jupiter is the largest planet in our Solar System. If you decided to take a Boeing 777 for a trip around Jupiter, it would take you over 21 days just to circle once around its equator and that is without the refueling stops. ...

Continue reading...

Jupiter
Geology

Rock, Mineral, Crystal, or Gemstone?

Rocks and minerals are all around us and used every day, perhaps without us even being aware of them. Besides making up the solid, supporting surface of the earth we live and move upon daily, rocks ... Continue reading

RockMineralCrystalGemstone
Medicine

Eating Disorders

Eating is controlled by many factors, including appetite, food availability, family, peer, and cultural practices, and attempts at voluntary control. Dieting to a body weight leaner than needed for ... Continue reading

EatingDisorders
Engineering

Hybrid Cars: The Magic Braking

You have undoubtedly seen one of the hybrid cars on the road. You probably heard that they are unlike any other fossil fuel or electric car. They are sort of both. ... Continue reading

HybridCars
Astronomy

Saturn: The Basics

To ancient astronomers, Saturn was a wandering light near the edge of the known universe. The planet and its rings have been objects of beauty and wonder ever since Galileo noticed the 'cup handles' ... Continue reading

SaturnTheBasics

Cosmos Provides Astronomers with Planet-Hunting Tool

PlanetHuntingToolIf only astronomers had a giant magnifying glass in space, they might be able to uncover planets around other stars. Now they do -- sort of. Instead of magnifying a planet, astronomers used the magnifying effects of one star on a more distant star to reveal a planet around the closer star. The discovery marks the first use of a celestial phenomenon known as microlensing to locate a planet outside our solar system. A star or planet can act as a cosmic lens to magnify and brighten a more distant star lined up behind it. That's because the gravitational field of the foreground star bends and focuses light, like a glass lens bending and focusing starlight in a telescope. Albert Einstein predicted this effect in his theory of general relativity and confirmed it with our Sun.

The newly discovered star-planet system is 17,000 light years away, in the constellation Sagittarius. The planet, orbiting a red dwarf parent star, is most likely one-and-a-half times bigger than Jupiter. The planet and star are three times farther apart than Earth and the Sun.Together, they magnify a farther, background star some 24,000 light years away, near the Milky Way center. In most prior microlensing observations, scientists saw a typical brightening pattern, or light curve, indicating that a star's gravitational pull was affecting light from an object behind it. The latest observations revealed extra spikes of brightness, indicating the existence of two massive objects.

Dr. Bohdan Paczynski of Princeton University, Princeton, N.J., an OGLE team member, first proposed using gravitational microlensing to detect dark matter in 1986. In 1991, Paczynski and his student, Shude Mao, proposed using microlensing to detect extrasolar planets. Two years later, three groups reported the first detection of gravitational microlensing by stars. Earlier claims of planet discoveries with microlensing are not regarded as definitive, since they had too few observations of the apparent planetary brightness variations.