ScienceIQ.com

Your Own Personal Rainbow?

Did you know that no two people ever see the very same rainbow? It's true. Rainbows are formed when light enters a water droplet, reflects once inside the droplet, and is reflected back to our eyes dispersed into the visible spectrum; red, orange, yellow, green, blue, indigo and violet. The rainbow you are seeing is actually from water droplets ...

Continue reading...

Rainbows
Astronomy

What Happens at the Edge of a Black Hole?

The greatest extremes of gravity in the Universe today are the black holes formed at the centers of galaxies and by the collapse of stars. These invisible bodies can be studied by examining matter ... Continue reading

EdgeofaBlackHole
Medicine

Legionnaires' Disease

Legionnaires' disease, which is also known as Legionellosis, is a form of pneumonia. It is often called Legionnaires' disease because the first known outbreak occurred in the Bellevue Stratford Hotel ... Continue reading

LegionnairesDisease
Medicine

Encephalitis and Meningitis

Encephalitis and meningitis are inflammatory diseases of the membranes that surround the brain and spinal cord and are caused by bacterial or viral infections. Viral meningitis is sometimes called ... Continue reading

EncephalitisandMeningitis
Engineering

For Want Of An O-Ring

Who can forget the Challenger disaster of 1986, the culprit, a failed O-ring. But what exactly is an O-ring and how did it cause the destruction of this space shuttle? When surfaces are flat, gaskets ... Continue reading

ForWantOfAnORing

A Giant X-Ray Machine

AGiantXRayMachineThe first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equator, a surprising result since Jupiter's X-ray emission is mainly concentrated near the poles. Existing theories cannot easily explain the intensity or distribution of Saturn's X-rays. Chandra observed Saturn for about 20 hours in April of 2003. The spectrum, or distribution with energy of the X-rays, was found to be very similar to that of X-rays from the Sun. The observed 90 megawatts of X-ray power from Saturn's equatorial region is roughly consistent with previous observations of the X-radiation from Jupiter's equatorial region. This suggests that both giant, gaseous planets reflect solar X-rays at unexpectedly high rates. Further observations of Jupiter will be needed to test this possibility.

The weak X-radiation from Saturn's south-polar region presents another puzzle (the north pole was blocked by Saturn's rings during this observation). Saturn's magnetic field, like that of Jupiter, is strongest near the poles. X-radiation from Jupiter is brightest at the poles because of auroral activity due to the enhanced interaction of high-energy particles from the Sun with its magnetic field. Since spectacular ultraviolet polar auroras have been observed to occur on Saturn, Ness and colleagues expected that Saturn's south pole might be bright in X-rays. It is not clear whether the auroral mechanism does not produce X-rays on Saturn, or for some reason concentrates the X-rays at the north pole.

The same team detected X-radiation from Saturn using the European Space Agency's XMM-Newton Observatory. Although these observations could not locate the X-rays on Saturn's disk, the intensity of the observed X-rays was very similar to what was found with Chandra and consistent with a marginal detection of X-rays from Saturn reported in 2000 using the German Roentgensatellite (ROSAT).