ScienceIQ.com

It's Gonna Hit Us... Or Is It?

Recently, some astronomers were concerned that a newly discovered asteroid might hit Earth in 2017. This was big news because even the impact of a modest-sized asteroid could have a devastating effect. In fact, a large impact 65 million years ago is thought to have wiped out the dinosaurs. So scientists take seriously any potential asteroid impact ...

Continue reading...

MeteorHit
Engineering

Red Dot Replacing Cross Hairs

A bullet fired from a gun becomes subject to the pull of gravity and begins to fall the instant it leaves the gun barrel. The farther away from the gun the bullet travels, the lower to the ground it ... Continue reading

RedDotReplacingCrossHairs
Astronomy

Galaxy Cluster RDCS 1252.9-2927

A color composite image of the galaxy cluster RDCS 1252.9-2927 shows the X-ray (purple) light from 70-million-degree Celsius gas in the cluster, and the optical (red, yellow and green) light from the ... Continue reading

GalaxyClusterRDCS125292927
Chemistry

Turning Oil Into Gas

When you see all those cars at the gas station filling up with unleaded, you may not stop to think about how that gasoline got there. It wasn't pumped out of the ground in that form. The same goes for ... Continue reading

TurningOilIntoGas
Engineering

Hollywood To The Rescue

Sixty years ago, World War II was driving many advances in the sciences; a surprising number of these developments have evolved to impact our lives today. At the beginning of the war, scientists and ... Continue reading

HollywoodRescue

Searing Heat, Little Package

SearingHeatLittlePackageEngineers have created a miniature hotplate that can reach temperatures above 1100C (2012F), self-contained within a 'laboratory' no bigger than a child's shoe. The micro-hotplates are only a few dozen microns across (roughly the width of a human hair), yet are capable of serving as substrates, heaters and conductors for thin-film experiments ranging from material analyses to the development of advanced sensors. Researchers at Boston MicroSystems, Inc. craft the hotplates out of silicon carbide, a robust material that can tolerate extreme heat and reach peak temperature in less than one-thousandth of a second. Silicon carbide is not only stable at high temperatures, it is also impervious to chemical attack from most materials. As a result, the hotplates can be cleaned by merely burning debris off the surface.

Contained on a microchip, the tiny 'labs' reside within a polycarbonate chamber that can endure near-vacuum pressures. Ports on the chamber's sides allow gases to pass through and feed experiments, and because of the chamber's transparency, researchers can observe experiments with a microscope as they progress. The hotplates also contain an integrated temperature gauge and a pair of electrodes. These components allow researchers to test the electrical properties of various materials that may be deposited onto the hotplates.

Using the stable, thin-film deposition properties and integrated circuitry of the hotplates, researchers are already developing applications such as oxygen and engine emission sensors. The sensor may have several advantages over devices in today's combustion engines, due to the micro-hotplate's chemical stability, small size, rapid response and low power consumption.