ScienceIQ.com

Single Molecule Electroluminescence

Incandescence and luminescence are two main ways of producing light. In incandescence, electric current is passed through a conductor (filament of a light bulb for example). The resistance to the current in the conductor heats it up and it starts emitting light - glowing. Any other form of producing light without heat is called Luminescence, ...

Continue reading...

Electroluminescence
Biology

The Egg-citing Egg

How many chicken eggs have you eaten in your life? If it is any gauge, the per capita consumption of eggs by Americans is over 250 per year. Eggs are not only found on your breakfast plate, but in ... Continue reading

Eggs
Biology

There's A Lot More To Vision Than Meets The Eye

Have you ever heard of Anton's Syndrome? It's a bizarre medical disorder involving a dramatic mismatch between sensory input and conscious awareness. Why is the syndrome bizarre? Not because the ... Continue reading

VisionMeetsTheEye
Medicine

Malaria and Sickle Cell Anemia

Sickle cell anemia is a genetic disorder in which the red blood cells collapse into a 'sickle' shape and cannot carry oxygen very well. They also tend to get stuck in narrow blood vessels, causing ... Continue reading

MalariaSickleCell
Astronomy

Laser Guide Stars

Did you ever wonder why we have to have the Hubble Space Telescope so high up in the Earth's orbit? Why not just make a bigger and better telescope on the surface? ... Continue reading

LaserGuideStars

Oil Viscosity

OilViscosityEverybody recognizes 'oil' as a word for liquid materials that do not behave like water. They have a 'thickness' and self-cohesive character (autocohesion) that enables them to form a film on a surface. Oils have a characteristic feel when rubbed between one's thumb and forefinger. They are often compounds that have a high degree of hydrocarbon content in their molecules, especially those used as mechanical lubricants. The size of the hydrocarbon portions of the molecules, and the non-polar nature of the hydrocarbon structure, work together so that the molecules of an oil prefer to stick to each other and not interact with polar materials such as water. (Oil and water do not mix...) The combination of molecular size and autocohesive character produces a property in all fluids known as 'viscosity'. It can be defined either as a resistance to flow or as a resistance to the movement of something through that fluid.

Both of these definitions represent the resistance of the molecules of the fluid to separate from each other or 'sheer'. To illustrate the property of viscosity, use two identical containers, one of which is filled with water and the other with olive oil. Now drop identical marbles (or something similar) into each container and observe what happens. The marble will drop more slowly through the more viscous olive oil than through the water. Viscosity is temperature dependant. By heating the olive oil in the above example, it becomes more and more water-like in its consistency. As the viscosity of an oil 'breaks down' with increasing temperature, its ability to form a protective film also decreases and it may be squeezed entirely out from between the metal components that it must protect. Alternatively, viscosity increases as temperature decreases, and oils become more solid-like in character.

In internal combustion engines, lubricating oil viscosity must be maintained throughout the operating temperature range. Generally, viscosity is matched to a number of factors, but primarily to operating temperature and mechanical pressures. A lighter grade of oil may serve well at low temperatures but lose the ability to protect the engine adequately over prolonged periods at higher operating temperatures. A heavier grade of oil,on the other hand, may serve very well at higher temperatures, but become so thick as to cause damage to engine components when cold.