ScienceIQ.com

What Is High Blood Pressure?

High blood pressure is a blood pressure reading of 140/90 mmHg or higher. Both numbers are important. About one in every four American adults has high blood pressure. Once high blood pressure develops, it usually lasts a lifetime. The good news is that it can be treated and controlled. High blood pressure is called 'the silent killer' because it ...

Continue reading...

WhatIsHighBloodPressure
Biology

A Creature Only A Mother Could Love?

A creature only a mother could love isn't even much loved by its own mother. The Komodo dragon, weighing as much as 300 lbs. (136 kgs) or more, eats more than half its own weight in one meal. It ... Continue reading

MotherLove
Biology

Our Brains: A Wasted Resource?

Have you ever heard people say, 'Human beings use only 10 percent of their brains?' It implies that some gifted scientist has already been able to accurately calibrate the brain's maximum operational ... Continue reading

WastedBrains
Geology

Rock, Mineral, Crystal, or Gemstone?

Rocks and minerals are all around us and used every day, perhaps without us even being aware of them. Besides making up the solid, supporting surface of the earth we live and move upon daily, rocks ... Continue reading

RockMineralCrystalGemstone
Astronomy

X-ray Emissions From Comets

The X-ray emission from comets is produced by high-energy particles, but the high-energy particles come not from the comet but from the sun. Matter is continually evaporating from the solar corona in ... Continue reading

XrayEmissionsComets

The Doppler Effect

TheDopplerEffectAs any object moves through the air, the air near the object is disturbed. The disturbances are transmitted through the air at a distinct speed called the speed of sound, because sound itself is just a sensation created in the human brain in response to small pressure fluctuations in the air. Sound moves through the air as a series of waves. When the waves pass our ears, a sound is detected. The distance between any two waves is called the wavelength and the time interval between waves passing is called the frequency. The wavelength and the frequency are related by the speed of sound; high frequency implies short wavelength and low frequency implies a long wavelength. The brain associates a certain musical pitch with each frequency; the higher the frequency, the higher the pitch. Similarly, shorter wavelengths produce higher pitches. The speed of transmission of the sound remains a constant regardless of the frequency or the wavelength.

The speed of sound only depends on the state of the air (or gas) medium, not on the characteristics of the generating source. Because the speed of sound depends only on the state of the gas, some interesting physical phenomena occur when a sound source moves through a uniform gas. You can study some of these phenomena by using the interactive sound wave simulator. As the source moves, it continues to generate sound waves which move at the speed of sound. Since the source is moving slower than the speed of sound, the waves move out away from the source. Upstream (in the direction of the motion), the waves bunch up and the wavelength decreases. Downstream, the waves spread out and the wavelength increases. The sound that our ear detects will change in pitch as the object passes. This change in pitch is called a doppler effect. There are equations that describe the doppler effect.

As the moving source approaches our ear, the wavelength is shorter, the frequency is higher and we hear a higher pitch. If we let (fa) be the approaching frequency, (a) be the speed of sound, (u) be the velocity of the approaching souce, and (f) be the frequency of the sound at the source, then fa = [f * a] / [a - u]. As the moving source leaves us, the wavelength is longer, the frequency is lower and the pitch is lower. Again. if (fl) is the leaving frequency, then fl = [f * a] / [a + u].