ScienceIQ.com

Big Boom

They sound like thunder, but they're not. They're sonic booms, concentrated blasts of sound waves created as vehicles travel faster than the speed of sound. To understand how the booms are created, look to the ocean. ...

Continue reading...

BigBoom
Astronomy

Cosmos Provides Astronomers with Planet-Hunting Tool

If only astronomers had a giant magnifying glass in space, they might be able to uncover planets around other stars. Now they do -- sort of. Instead of magnifying a planet, astronomers used the ... Continue reading

PlanetHuntingTool
Astronomy

Saturn: The Basics

To ancient astronomers, Saturn was a wandering light near the edge of the known universe. The planet and its rings have been objects of beauty and wonder ever since Galileo noticed the 'cup handles' ... Continue reading

SaturnTheBasics
Engineering

Cool Fuel Cells

Astronauts have been using them for power aboard spacecraft since the 1960s. Soon, perhaps, they'll be just as common on Earth--powering cars, trucks, laptop computers and cell phones. They're called ... Continue reading

CoolFuelCells
Biology

Marmaduke and the Taco Bell Chihuahua Are Cousins

You would never think Marmaduke, the enormous great dane of the newspaper cartoons, and the tiny Taco Bell chihuahua are close relatives. But the fact is, ALL dogs are pretty close relatives. ... Continue reading

Marmaduke

Stopping In Thin Air

StoppingInThinAirImagine you're going very fast -- much faster than a race car. In fact, imagine you're going 100 or 200 times faster than a race car. When you reach your destination, you need to stop relatively quickly. How would you do it? It wouldn't take a rocket scientist to think of using the brakes. But, it might take a rocket scientist to skip the brakes, and use nothing but thin air to slow down.That's the idea behind aerocapture, a technology currently being researched by NASA scientists. While a lot of spaceflight research being performed now deals with better and faster ways of reaching destinations in space, aerocapture is part of a field of research looking at better ways of stopping once you get there.

Traditionally, putting a spacecraft into orbit around another planet or landing a probe has required that the craft carry extra fuel to help it stop once it arrived at its destination. Given the concerns of cost and mass involved in launching a spacecraft, having to carry extra fuel for braking could place some major limitations on proposed science research missions--limiting the amount of scientific equipment that could be carried on some flights and ruling some missions out entirely. Aerocapture is a braking method that requires no extra fuel, but instead involves the use of a planet's atmosphere to slow down a spacecraft. Use of this technique could reduce the typical mass of an interplanetary spacecraft by half or more, allowing for a craft that is smaller and cheaper, but also better equipped to conduct long-term science research at its destination.

NASA researchers are currently developing technologies required to make aerocapture in interplanetary flight a reality, and are considering use of the technique for possible missions to Mars, Neptune, and Saturn's moon Titan. When the research is completed, and if those missions, or others similar to them, are successful, then some of the biggest challenges in interplanetary flight could disappear--into thin air.