ScienceIQ.com

What is Volcanic Ash?

Small jagged pieces of rocks, minerals, and volcanic glass the size of sand and silt (less than 1/12 inch or 2 millimeters in diameter) erupted by a volcano are called volcanic ash. Very small ash particles can be less than 1/25,000th of an inch (0.001 millimeter) across. Though called 'ash,' volcanic ash is not the product of combustion, like the ...

Continue reading...

VolcanicAsh
Biology

Bioenergy Basics

Biomass (organic matter) can be used to provide heat, make fuels, and generate electricity. This is called bioenergy. Wood, the largest source of bioenergy, has been used to provide heat for thousands ... Continue reading

BioenergyBasics
Physics

Quarks

Quarks are the most fundamental particles that we know of. Both protons and neutrons are made of quarks. We know quarks exist; we have experimental proof. However nobody has been able to isolate them; ... Continue reading

Quarks
Astronomy

318 Times as Massive as Earth

What is 318 times more massive than Earth? Jupiter, the fifth planet from the Sun (next in line after Earth and Mars). Jupiter is the largest planet in our Solar System. If you decided to take a ... Continue reading

Jupiter
Geology

Earthquake Weather?

In the 4th Century B.C., Aristotle proposed that earthquakes were caused by winds trapped in subterranean caves. Small tremors were thought to have been caused by air pushing on the cavern roofs, and ... Continue reading

EarthquakeWeather

Guide to Propulsion

GuidetoPropulsionWhat is propulsion? The word is derived from two Latin words: pro meaning before or forwards and pellere meaning to drive. Propulsion means to push forward or drive an object forward. A propulsion system is a machine that produces thrust to push an object forward. On airplanes, thrust is usually generated through some application of Newton's third law of action and reaction. A gas, or working fluid, is accelerated by the engine, and the reaction to this acceleration produces a force on the engine. A general derivation of the thrust equation shows that the amount of thrust generated depends on the mass flow through the engine and the exit velocity of the gas. Different propulsion systems generate thrust in slightly different ways.

Why are there different types of engines? If we think about Newton's first law of motion, we realize that an airplane propulsion system must serve two purposes. First, the thrust from the propulsion system must balance the drag of the airplane when the airplane is cruising. And second, the thrust from the propulsion system must exceed the drag of the airplane for the airplane to accelerate. In fact, the greater the difference between the thrust and the drag, called the excess thrust, the faster the airplane will accelerate. Some aircraft, like airliners and cargo planes, spend most of their life in a cruise condition. For these airplanes, excess thrust is not as important as high engine efficiency and low fuel usage.

Since thrust depends on both the amount of gas moved and the velocity, we can generate high thrust by accelerating a large mass of gas by a small amount, or by accelerating a small mass of gas by a large amount. Because of the aerodynamic efficiency of propellers and fans, it is more fuel efficient to accelerate a large mass by a small amount. That is why we find high bypass fans and turboprops on cargo planes and airliners. Some aircraft, like fighter planes or experimental high speed aircraft, require very high excess thrust to accelerate quickly and to overcome the high drag associated with high speeds. For these airplanes, engine efficiency is not as important as very high thrust. Military aircraft typically employ afterburning turbojets. Future hypersonic aircraft will employ some type of ramjet or rocket propulsion.